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ABSTRACT

Two dimensional steady symmetric incompressible laminar flow past
a class of blunt and sharp nosed bodies is investigated in optimal co-
ordinates. The analysis is carried out for different problem parameters
and the solution is specialized for the cases of the parabola, a semi-
infinite thin flat plate and the flow against a vertical wall.

The problem is formulated by mapping the body from a Cartesian
plane into a conformal plane by applying a Schwarz-Christoffel trans-

formation. __This type of transformation maps the flow field into a

stagnation point flow in the conformal plane. The governing differential
equations are devgloped in an optimal coordinate system such that the
viscous solutions contain the first-order inviscid solution as well as
the solutioﬁ for £1pw due to displacement thickness. This type of
formulation of thé viscous flow problem in optimal coordinates results
in a coupled set of flow and coordinate equations. A boundary-layer
and pa lized Navier-Stokes analysis is used for the solution procedure
i{léhe present optimal coordinate system.

Y Optimal coordinates are computed according to the classical first-

order boundary-layer approximation as well as with a parabolized version

of streamfunction vorticity form of the full Navier-Stokes equations.

A boundary-layer type forward marching numerical scheme is employ to

solve the flow equations in optimal coordinates €rnating direct-
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ijﬁltmplicit (ADI) scheme is used to solve the coordinate equation.
;SThe analysis is carried out for two example problems, a semi-infinite

thick plate and a semi-infinite blunted wedge. The solutions are obtained
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ot for different body geometries (bluntness parameters) in both examples.
Results for skin friction, displacement thickness, pressure gradient

parameter and optimal coordinates, for different problem parameters,

are presented for unseparated flow cases., Physical quantities such as

surface pressure gradient distribution, skin friction and displacement
thickness for cases of flow past the parabola, the thin flat plate and

flow against a vertical wall are compared with existing numerical and

analytical results. —
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I. INTRODUCTION

A suitable choice of a coordinate system can simplify the complexity
of a problem especially one involving non-linear partial differential
equations. 1In some cases the proper choice of independent and dependent
variables reduces the original partial differential equation to an ordi-
nary differential equation, i.e. if similarity conditions exist. The
Falkner-Skan similarity variables are an exaﬁple of such a case where
the boundary-layer equations reduce to an ordinary differential equation
called the Falkner-Skan equation. Due to the simplicity of ordinary
differential equations, the numerical solution of ordinary differential
equations can be found more accurately and with less effort, in general,
than the numerical solution of the original partial differential equationms.

In many singular perturbation problems, which show a boundary-layer
like behavior, the coordinate system chosen for the problem may play an
important role in éescribing the flow appropriately. In other words, the
solution of boundary-layer type flows may depend on the coordinate system
chosen. This fact did not receive a systematic investigation until Kaplun1
introduced the idea of optimal coordinates which according to Kaplun
removes the singularity due to the boundary-layer approximation and renders
the boundary-layer solution uniformly valid in the entire flow field for
high Reynolds number flow.

The idea of optimal coordinates, although first mentioned by Kaplun is
also mentioned in the works of Lattaz, Friedrichs3, Weyl4 and Segels.
The dependence of the boundary-layer solution on the coordinate system is
discussed by Van Dyk‘%9 for flow past a flat plate in Cartesian and para-
bolic coordinates. Some other applications of optimal coordinate theory

have been given by Crespo da Silva and Davis6.

1
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Kaplunl shows that the inviscid high Reynolds number solution is

independent of the coordinate system, since it is govermed by a vector

equation. However, he also shows that in a boundary-layer type analysis,

while going from the viscous flow region to the inviscid flow, the

boundary-layer solution produces different types of outer inviscid flows

depending on which coordinate system has been chosen. The coordinate

system which provides the outer flow including the displacement effect,

- -

to a given order, is an optimal coordinate system to that order. There~

fore Kaplun's investigation of the dependence of the boundary-layer solu-

tion on the coordinate system leads to the possibility of developing the

most appropriate coordinate system for carrying out high Reynolds number

flow computations.

Since the introduction of the idea of optimal coordinates by Kaplun,

several investigators have explored the application of optimal coordinate

theory to obtain uniformly valid solutions for singular perturbation

problems in fluid mechanics. A review of the literature related to optimal

coordinates is presented by Legner7. Legner7 shows that the application

of Kaplun's idea is not limited to fluid mechanics problems, but also can

engineering areas. For example, Zauderer's8

can SEE S R e

convex cylinders in a uniform stream are worth mentioning.

succeésfully be applied to singular perturbation problems in other applied

work on defraction problems

involving multi-region transition and Segel's work on the vibrationm of

An extension of Kaplun's correlation theorem was made by Van Dyke9 ~
who extended Kaplun's first-order theorem to second-order. This allows

one to transform a second-order boundary-layer solution from ome coordinate

|
|
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system to another. A further development of Kaplun's work was presented
by Legner7 who extended the entire optimal coordinate theory to higher
order. Subsequent generalization of Legner's approach to finding optimal
coordinates was provided by Davis.10

The numerical determination fo coordinate systems for use with the
boundary-layer or Navier-Stokes equations has been studied by several

11,12,13 In these methods

investigators, see for exémple, Thompson et al.
in order to generate a coordinate system, a criterfon must be specified
which the coordinate system should satisfy. Therefore, if we set our
criterion for the coordinate system such that the boundary-layer solution
in these sets of coordinates reproduce the inviscid solution including
the displacement effect, the coordinates thus obtained will be optimal in
the sense of Kaplun's definition. Davis10 has discussed how the optimal
coordinates can be generated numerically in a manner similar to that used
by Thompson et al.11 for non optimal coordinates.

The advantages of the use of the optimal coordinates with the
boundary-layer and the Navier-Stokes equations for obtaining numerical

as well as analytical solutions are ellaborated in the works of Davis10

and Davis.14 In the optimal coordinate study by Davis10 it has been
shown that for a plane symmetric flow, the use of the Legner condition
and the assumption of the orthogonality condition for the coordinate
system results in a set of conformal coordinates. These conformal co-
ordinates, which in the sense of optimal coordinate theory are the best
coordinates, are used in the mmerical scheme of Davis15 for viscous

flow past the parabola, which becomes a flat plate as the nose radius of
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curvature approaches zero. This coordinate system shows considerable
improvement over other coordinate systems in the convergence and accur-
acy of the numerical solution. These coordinates were also successful

in removing the leading edge singularity for the flow past the flat plate.
However, the use of conformal coordinates in the case of flow past wedges
(see Davis, U. Ghia and K. Ghia16), although showing good resolution and
convergence in most of the flow field, fails to remove the leading edge
singularity except for the speiial cases of semi-wedge angle equal to
zero, (the flat plate case), and 90° (the vertical wall case). Davis10
has further shown that it may be possible to generate a non-orthogonal
optimal coordinate system which removes the leading edge singularity for
the sharp wedge cases, by introducing the required arbitrariness into

the generation of optimal coordinates.

The present numerical work will show that in optimal coordinates,
parabolization of the Navier-Stokes equations renders a considerable
simplification in the numerical treatment of. the Navier-Stokes equations
and at the same time, that it is possible to achieve good agreement
between solutions to the parabolized equations and the full Navier-Stokes
equations. Previous work on developing parabolized models for the same
type of problems, but not in a fully optimal coordinate system, has been
done by Davis,15 U. Ghia and Davis,17 and Werle and Bernstein.18

In the present analysis, a parabolic form of the Navier-Stokes
equations 1s therefore developed in a generalized non-orthogonal optimal

coordinate system. The purpose of this investigation is to determine

if there is an advantage in using these optimal coordinates.

'S
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Analytical determination of the present optimal coordinate system
is rather difficult, since in order to determine the present set of
coordinates it is essential to solve for the flow due to displacement
thickness. Only for a few simple cases of viscous flow is the analytical
expression for the inviscid flow due to displacement thickness known.
In most cases the solution to the inviscid flow due to displacement thick-

ness, must be generated numerically. Therefore in the present analysis,

. a method is developed to numerically generate the optimal coordinates

using a finite difference technique. The flow equations are solved
utilizing a boundary-layer like forward marching techpique and the
coordinate equation is solved using a time dependent relaxation scheme.
Two model problems are comsidered in order to demonstrate the application
of the present analysis. It is shown through model problems that it is
possible to numerically generate a set of optimal coordinates and that
the solution obtained from the present calculations shows good agreement

with the existing analytical and numerical results.
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II. GENERATION OF OPTIMAL COORDINATES

It was mentioned in the Introduction chat in order to determine
optimal coordinates in a high Reynolds number flow problem, it is
necessary to know apriori not only the first-order inviscid flow but
also the flow due to displacement thickness. This implies that one
should have the first-order boundary-layer solution at hand in order to
determine optimal coordinates to first order. This information is
available in the form of self-similar solutions for a few simple flows
but in most cases one must resort to a numerical method in order to de-
termine the boundary-layer solution. The inviscid flow due to the dis-
placement effect is then determined from a separate analysis or numerical
calculation.

In the subsequent section a brief description is presented on how
to generate optimal coordinates numerically for a two dimensional in-
compressible symmetric flow. However, the analysis could be extended
to unsymmetric, compressible, three dimensional, etc. flows as well,
see Legner.7

For the present study we will assume that the form of the optimal
coordinates chosen are such that they produce a separable solution for
the inviscid flow to arbitrary order. These types of optimal coordinates
are described and developed in detail by Davis.lo However, a brief
summary of Davis 10 analysis is presented in the following section for
the sake of completeness.

In the Davislo analysis it is assumed that the independent variables

are chosen such that a separable solution exists in the inviscid while
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an unseparable solution is confined at most to the viscous region. 1In
some special cases the viscous region may also be separable. Choice of
guch variables represent definite advantages in determining solutions
analytically as well as numerically.

In order to obtain a set of optimal coordinates, hereafter denoted
by a (§,n) coordinate system, the flow field in the physical (x,y) plane
is mapped into a stagnation point type flow by a conformal transformation
of the following form (see Figure 1):

z = f(ptiq) = £(z) . (2.1
The quantity 7 = p+iq represents the conformal plane and f is an analytic
function. This type of mapping is used in order to simplify the boundary
conditions which result from relating the optimal to the conformal system
of coordinates. In addition there are certain other advantages to this
type of mapping and these will be elaborated on in a later section.

The outer inviscid flow, which according to optimal coordinate
theory, (see, Legner7) is independent of the coordinate system, is matched
with the boundary-layer solution in the (£,n) coordinate system, by apply-
ing the asymptotic-matching principle, (see, Van Dykelg). In the present
matching of two solutions it is assumed that the boundary-layer solution
in the (£,n) optimal coordinate system is uniformly valid far from the
body, i.e. in the transverse direction. This type of matching of the
two solutions results in a set of conditions for determination of the
optimal coordinate system, the order of which depends on the number of
terms considered in the expansion in terms of 1//Re as the perturbation

parameter. In order to further simplify the condition for the optimal

"
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coordinates and to obtain a more useful form, Davislo uses the Legner7
form of the outer inviscid streamfunction expansion and we will adopt

the same procedure here. Finally invoking the fact that the inviscid
solution is separable to arbitrary order in the present set of (&,n)
optimal coordinates, the proper form of the outer flow including the
displacement effect is obtained. Using this form of the inviscid stream-
function in Laplace's equation governing the streamfunction, i.e.,

Vz win = 0, together with a suitable coordinate transformation relation
to relate the conformal coordinates p and q with the optimal coordinate
system £ and n, the coordinate equation is developed. Finally the
governing differential equations in terms of streamfunction and vorticity
are developed in optimal coordinates from the corresponding equations in
a generalized coordinate system as given by Lagerstromzo p. 66, by
applying the suitable cocrdinate transformation manipulations. The
necessary coordinate transformation relation, the coordinate equations

to determine the optimal coordinate system and the flow equations to-
gether with the boundary conditions to solve these equations in optimal
coordinates will be presented in their final forms as given by Davis.lo
The details of the derivation will not be repeated here.

In the present analysis the flow field is mapped intc a conformal
plane and the corresponding flow is then investigated in the optimal
plane., A typical example of such a mapping of the flow field is presented
in Pigure 1, in which the two dimensional flow past a circular cylinder
is shown in the physical, conformal and optimal Plane in Figure la, 1b

and lc, respectively (see also Davislo).




The transformation of independent variables from the conformal (p,q)

to the optimal (£,n) coordinate system is carried out using the following

relations
) 1 9 3 4

and (2.2a,b)
) 1 ) ]
3q - I, Critrm o

where Jt is the Jacobian of the transformation matrix and is given by

(2.2c)

= Pedn™Pply -

The rest of the coefficients of the metric tensor relating the

optimal coordinate system (£,n) to the conformal coordinates (p,q) are

given as
e, = 8r22 =P, + 1,
Be ™ 8’12 = PP, + 9%,
v, = pg + qg (2.3a,4d)
and
Jf =g, Tay, - Bf = (pgq;‘pnqg)2 .
9




Similar expressions can be obtained to relate a Cartesian coordinate system

to the optimal coordinates. They are rewritten here as given by Davislo

_ .2 2 - 2
aagzz—xn+yn har R
B=g . =xx + = n’8
(2.4a,e)
2 2 2 ’
Y =8 T + Vg = hy
and
2 2 2 4 2
J g=ay -8B (xayn-—xnyg) h Jr .
where

' d
b= |2

We will now write down the governing differential equations in the
(£,n) coordinate system.

1. The Navier-Stokes Equations

The non-dimensionalization used in the flow equations is as follows.
All lengths are non-dimensionalized by the viscous length v/Ur, where v
is the kinematic viscosity and Ur is the reference velocity in the flow.
The streamfunction is non-dimensionalized by v and the vorticity by Uf/v.
Finally the time is non-dimensionalized by v/Ulz..

With this non-dimensionalization the streamfunction equation is given

in the (g,n) coordinate system as

ZBr S 2%
£ -—f +—f  +-—=f =g . (2.5)
mooy, &n oy, & & Y, &
10
s mes ol el o e e
e ————————— R




where the streamfunction ¢y is defined in the spirit of similarity vari-

ables as

b = £f(g,n)

and the vorticity w is likewise defined as

EYr
2 2 g(gsn) = - EHg(g,n)
J

T

w = -
h

where the inverse scale factor H is given as

e _H
2.2

= —L
h"J h2
r

(2.6)

(2.7)

(2.8)

and Hr is the scale factor of transformation relating the optimal (£,n)

coordinates to conformal (p,q) coordinates and is given by

[ }
ﬂ‘-‘N I H-<

(2.9)

where Y, and Jr are already defined in Equations (2.3¢) and (2.3d).

Similarly h is the scale factor of transformation from the conformal

to the physical plane and is given as
h= f'(z) ,
where

T = ptiq

11
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(2.11)




The transformed vorticity transport equation is given by

J
r
g + [ m W + . (f+£fg)]gn

Py Bl Gl R gl

H r H Yr H2 2 Yr H 5 Yr i

+% (i—:)n —%:—: (fj—z)E +:—§ (%)2 +:—:Z—" (f+E;fE) (2.12)
-j—; Qa +§§)fn]g+ [%%-j—jz:—n-%fn]gs
-_jj_gin+%g§€+%:—zg£ =%gt '

The boundary conditions are given as follows. The no-slip and zero
injection conditions give at n = 0

£(£,0) =0
and (2.13a,b)

fn(E,O) =0 .

The asymptotic boundary condition far from the body gives
£(g,n) » n-C
and as n -+ = (2.14a,b)
g(€,n) = 0
where C is a constant and from the general definition of the displacement
thickness Davis10 has shown that C is a displacement constant in optimal

coordinates.

12




We will be considering flows past semi-infinite bodies for which
self-similar solutions exist to the boundary-layer equations at downstream
infinity. Therefore the downstream boundary condition as § + », is
given by the corresponding boundary-layer form and hence can be written
as follows.

The coefficients ar/yr and Jr/Yr > 1 as £ + », since the present
coordinates become conformal coordinates in this limit. Also Br/yr,
fEE’ fg’ fEn’ gg, 8ee and gEn -+ 0 at downstream infinity. The stream-
function Equation (2.5) therefore reduces to boundary-layer form and
is given by

f =g (2.15)

nn
and the vorticity Equation (2.12) becomes

g, + 8, + (1-28)f g = O (2.16)

nn
where B is the Falkner-Skan pressure gradient parameter and is given as

28
B = . (2.17)

where § is the slope of body surface asymptotically far downstream and
therefore is a known quantity.

It is interesting to note that the Equations (2.15) and (2.16) are
the similarity form of the boundary-layer equations. This shows that
the variables chosen for the present analysis are self-similar in nature.
Also substituting frm = g into the vorticity equation (2.16) and inte-
grating the resulting equation with respect to n once and making use of
the boundary condition on fn and the higher order derivatives of f as

n + =, the vorticity Equation (2.16) reduces to




2 .
fnnn *+ £Enn + B(1-£)) = 0 (2.18)

which is the familiar Falkner-Skan equation (see Schlichting21).
Additional relations required to solve the flow equations are given

in the following. From Equation (2.8), it can be shown that

B, 2h, HrE

H_ = - T + -Tr (2.19)
and

Hﬂ Zhﬂ Hrﬂ

F--5 ¢ —r . (2.20)

.This completes the description of the Navier-Stokes equations
together with the necessary boundary conditions in the (£,n) coordinate
system. The derivation of the coordinate equation will be briefly out-
lined in the subsequent section,

2. The Coordinate Equation

The coordinate equation is derived based on the inviscid flow in-
formation in the following way. It is noted from the viscous stream-
function f given by Equation (2.6) and the outer edge condition on £
given by Equation (2.1l4a) that the outer inviscid streamfunction in
g£,n coordinates is represented as

win = £(n-C) . (2.21)

If the flow is irrotational to arbitrary order, then the streamfunction

should satisfy the Laplace equation vzw in = 0, which can be written in

our case as

viEnc)) =0 . (2.22)

14
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Assuming pq = £n and treating p in a similar manner as we have treated
the transformed streamfunction y and vorticity w it is possible to obtain
coordinate relations of the form given in the following (see Davislo):

p=&Et(E,n) (2.23)

and

- n . (2.24)
q t(E ’n)

Making use of these coordinate relations (2.23) and (2.24) and substitut-
ing into (2.22) and writing the Laplacian V2 in the £ and n coordinate
syétem (with the help of the transformation of independent variable re-.
lations (2.2a,b) from the conformal (p,q) to the optimal (£,n) coordinate
system) it is now possible to show that the coordinate Equation (2.22)

reduces to

i

— t_ =0 2.25
Y. (2.25)

where t(£,n) is the coordinate relation function relating the two co-
ordinate systems through the expressions given in (2.23) and (2.24).
Determination of the (£,n) coordinate system amounts to finding the
solution of the partial differential Equation (2.25) with suitable boundary
conditions.
The coefficients as Br’ Ye and the Jacobian Jr’ appearing in the
flow Equations (2.5, 2.12) and the coordinate Equation (2.25) can now
easily be expressed as functions of £ and n by substituting the coordinate

relations (2.23) and (2.24) into Equations (2.3a-d). This results in

2nt
at-(52+—2)t§-——3£+1—2 , .‘
t t t

N




2
2 n_ -
Br (7 +- A)tgtn 3 t:E + Ettn .
t t
, 2
v_o= (g2 + ye? + 2cee, + 2 (2,26a-d)
r tA g 3
and
Etg nt
e=l+trwT-=% -

The boundary conditions for the coordinate Equation (2.25) are pres-
cribed as follows. The coordinate Equation (2.25) is elliptic in nature
and therefore needs boundary conditions around the boundaries in order to
make.the coordinate equation problem well posed. Since we will be con-
sidering symmetric bodies, the coordinate system is symmetric and therefore

ts(O,n) =0 (2.27)
The asymptotic boundary condition in the streamwise and transverse direction
are given as

t(g,n) ~1 as f > o
and (2.28a,b)

t(g,n) ~1 as n-*>o
The two boundary conditions given by Equations (2.28a,b) imply that far
from the body in either direction the optimal coordinates become conformal.

The remaining one condition is the boundary condition on t(f,n) at
the surface. It was shown by Davislo that this condition depends on the
displacement surface over the body and hence it is treated as an unknown.

In the following section {t will be shown how an interacting type analysis is

necessary in order to determine this missing boundary condition (t(£,0))

and therefore to solve the flow equations in optimal coordinates.

16
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Referring back to the boundary condition (2.14a) on the streamfunction,
i,e. f +n-Casn+ =, it is generally treated as fn +]1 as n > > and
C is determined as C(£) as n - «» if £ and n are not optimal coordinates.
Therefore under normal conditions, one has no control over the function
C(¢). However, it was already mentioned that there was one condition
missing from the coordinate equation in order to describe the system in
closed form. In fact the additional condition C(§) - C as n -+ =,necessary
for determining optimal coordinates,is used in determining the surface
boundary condition t(£,0). This clearly indicates that in order to solve
the coordinate equation in closed form it is essential to solve at least
the first-order boundary-layer flow such that the displacement surface
function C(§) - C as n+ », Since the coefficients a_, Br, Y, and Jr etc.
are functions of t(f{,n), they are therefore unknown and are determined as
a part of the solution. This implies that the flow equations (2.5 and 2.12)
through these coefficients are coupled to the coordinate equations and the
coordinate Equation (2.25) is coupled to the flow equations through -
the boundary condition t(£,0), the determination of which depends on the
successful satisfaction of the condition C(§) -+ C on the flow equation
solution as n + ». Therefore the condition on the displaceﬁent surface
C(g) + C serves as an additional condition on the flow and coordinate
equations such that the coordinates are optimal.

It is now clear that the streamfunction equation boundary conditions
are not over specified if we wish to prescribe fn +1and £ +n~C as
n + @ to determine optimal coordinates. The eﬁtra boundary condition on
the streamfunction £(£,n) is replaced by the missing boundary condition

on t(§,n). Therefore the Equations (2.1) through (2.28) represent a

17
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complete set of governing differential equations together with the
necessary Boundary conditions in order to determine the optimal coordinates
for two-dimensional plane symmetric flow.

It is interesting to note that the coordinate equation is formulated
based on the inviscid flow information whereas the viscous effects are
confined to the flow equations only. Because of the inherent coupling
between the coordinate equation in optimal coordinates and the flow equa-
tions, an interacting type pheqomenon takes place while determining the
viscous flow solution in optimal coordinates.

This brief description of the development of the optimal coordinates
in the case of two dimensional laminar incompressible symmetric flow
follows the more detailed analysis given by Davislo.

The development of the parabolized vorticity and the streamfunction
equations and also the boundary-layer equations are presented in the
following.

3. The Parabolized Vorticity and Stream Function Equations

The parabolized vorticity and stream funcation equations are obtained
from the full Navier-Stokes equation by neglecting all the terms in the
governing differential Equations (2.5) and (2.12), which include second
derivatives in the streamwise (£) direction. Also the cross derivative

a
terms £, and g, and X g, are neglected. The relevant advantages of
&n En Y, 1
the use of the parabolized form of the Navier-Stokes equations are
separately ellaborated in the nmumerical method of solution section.

It is important to note that this approximation retains all of the terms

which would arise in a second-order boundary-layer theory.
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It can be shown that with the parabolic approximation, the stream-

function Equation (2.5) reduces to the boundary-layer form and is given

by
f = . .29
o8 (2.29) 1
The parabolized vorticity equation reads as )
2H 28_ H J
n r & T
—_— = =2 4 —= (f+
Enn [H Y. H +y (£ EfE)]gn
r T
2 2 -
. Hn 28r HEHn a HE 2 BB, HE
-y 2 *y. 2 iy.®E iy ®
H Yr H Yr & r
(2.30)
8 B_ B B.2 J H
4
+3Ch -t D + 2D+ (e
T r r 3 T T
J ER 2a_ H 28 H £J
T |3 r & r n r
-— Q1+ g+ [—F-—F—-—Ff g, =0
Y. H ' 'n Y, H Y. H Y. n 11

The necessary boundary conditions to close the parabolized streamfunction
and vorticity equation set are as prescribed previously in Equations
(2.13) through (2.18).

4. The Boundary-Layer Equations in Optimal Coordinates

The steady-state boundary-layer equations in optimal coordinates are

obtained from the full Navier-Stokes Equations (2.5) and (2.12) by taking
the 1imit of the equations as Reynolds number Re -+ =, in inner boundary-
layer variables. By making the boundary-layer approximation in Equations
(2.5) and (2.12) 1t can be shown that many terms drop out and in addition
the remaining coefficients h, Hr’ Yy and Jr can be evaluated at the body

surface, i.e, at n = 0, These coefficients can therefore be written as
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h = h(g) s
i_ i} Jr(E)
Y, Yr(z)
and (2.31a-c)

2
H = t"(&§,0)
r
with these approximations the streamfunction Equation (2.5) remains the

same, i.e.

£ =8 (2.32)

and the vorticity Equation (2.12) reduces to

J J H J
r r g r
-+ —_— - fe— —_— - — = .
8n Y, (f+5fg)3n [Yr (1L +¢ g )fn]g E Y, fngE 0 (2.33)

The inverse scale factor H in the case of boundary-layer can be written as

H 2
H(£,0) = £ = t(£,0)

3 . (2.34)
h h™(g,0)

The expression for the scale factor h is given once the geometry
is prescribed and will be given later in the respective example problem.
Now substituting fnn = g into the vorticity Equation (2.33) and
integrating the resulting equation with respect to n and evaluating the

constant of integration by making use of the boundary condition on £

and its derivatives as n + », the vorticity equation can be written as

20




g T — T T TR P S O T

J J J H
£+ (rag ) - L2 L2 k2
nnn Yr nn Yl’ n Yr n
Jr Jr 3 HE
- £ z fEﬂf = - -Y: (1 +—2—-ﬁ—) (2.35)

We could work with these variables, however it is convenient to instead
develop variables similar to those of Gortler. 1In order to do this we
define V, a normal velocity like variable, as

V==-f - &f (2.36)

£ .
Making suitable rearrangements in the Equation (2.35) and replacing fn

by F we get the final form of the boundary-layer equations as

Jr Jr 2 Jr
Fn =7 Wty B8 (L-F)-g_~FF =0 (2.37)
r r r
and
Vn = -F ~ srg (2.38)

where the pressure gradient parameter f; is given by

¢R,
By = L+ . (2.39)

In transformed variables, a displacement thickness like variable &
can be defined as

-]

8= [ (1 - F)dn (2.40)
[+}

The necessary boundary conditions to solve the governing differential
Equations ((2.38) and (2.39)) are as follows. The no-slip and zero-in-

jection conditions at n = 0 give

21
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F(§,0) =0
and (2.41a,b)

v(,0) =0 .
The asymptotic boundary condition in the transverse direction gives

F(g,n) ~ 1 as n+o (2.42)
The flow is symmetric abcut the line £ = 0, therefore the symmetry con-
dition can be written as

FE = 0 at gE=0 . (2.43)
For the bodies we will be considering, at downstream infinity Jr/yr -+ 1
and the pressure gradient parameter Bi approaches the value of the Falkner-
Skan pressure gradient parameter R and the equation reduces to the Falkner-
Skan equation which can be rewritten as
.- VB +B(L-F) =0 (2.44)

nn

and

Vn = -~ F (2.45)

It is interesting to observe that the boundary-layer equations in the
present coordinates show self-similar behavior and similarity solutions are
automatically recovered whenever similarity exists. It is also important
to remark that the present form of the boundary-layer equations is similar
to those when written in Ggrtler variables.

This completes the general analysis for determination of the boundary-
layer equations in optimal coordinates except for the missing boundary
conditions t(£,0). In the following we will develop a scheme to determine

the surface boundary condition on t(&,n).
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5. The Surface Boundary Condition for the Boundary-Laver Equations

In the course of our previous discussion it was mentioned in Section
IT that the coordinate equation is coupled to the flow equation through
the surface boundary condition on t(§,n). The optimal coordinate con-
dition states that the transformed displacement thickness C should be
constant. We will make use of this condition to determine the missing
boundary condition on t(£,n). Since there is no explicit analytical
relation relating the surface boundary condition on t(£,0) and the
displacement thickness, C in optimal coordinates, we must determine the
value of t(£,n) on the surface iteratively. The iterative relation which
yields the value of t(£,0) in optimal coordinates is determined in the
following manner along with some othér interesting properties of the
equations.

Let us assume E and ﬁ are the coordinates that are optimal and hence
are to be determined. The coordinates £ and n are assumed not to be
optimal but some suitable coordinate system which is used as an initial

guess for the optimal coordinate system. Let us also assume that

£ = AEE,D) (2.46)

n = A(E)n (2.47)
and

E=BE |, (2.48

where A and B are arbitrary functions of §£.
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Then it follows that

n e (2.49)
an

Rl
>|ll:

=B'-§—_
£
and

2 (2.50)
an

o

2 .

]
where the prime denotes the differetiation of the dependent variable with
respect to £. Using these coordinate transformation relations (2.49) and

(2.50) in the boundary-layer Equation (2.35) along with the relation for

f given by (2.46) gives

J '
F—o + L A% 4+ 5 ‘EA [E + —2B Er1E-
nnn Yr Al nn
(1+¢ —)
2 Jr I 2
+A (1—f)-£ L A% B Fpm = 0 (2.51)
Yr Ye gn

Since the Equation (2.35) is true in general, the Equation (2.51)
should be identical except that the unbarred quantities should be replaced
by barred quantities. Comparison of the two Equatiors (2.35) and (2.51)

then requires that

2 r J
(1+a—) == (2.52)
r Yr
3N 7
——— =5 =B 2.53
a +§2_.) 3 &) , (2.53)
, J I
AT Eey = E R (2.54)
r Y
r
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and

J

ns 2,:-
5 A"3 13
T

,Hul

£ (2.55)

1
~

Combining the relations given by Equations (2.52) and (2.55) we get

J ' J
a7 o+ 8 L8 x 2, (2.56a) )
Y A =Y g

r g 'r

which can be simplified to yield
ER’ = F = :
EA £ = B(%) . (2.56b)

1+ —jr-)

The above relation is already satisfied by Equation (2.53). There-
fore we can ignore one of the two relations given by Equations (2.52)
and (2.55). Hereafter we will neglect the relation (2.55).

Equation (2.56b) gives

EB'

7y
a1+ A

= B(E)

or rearranging we obtain

B’ 1 A’
" (E + K—) . (2.57a)

Integrating both sides the Equation (2.57a) we get

B = KA (2.57b) ‘

where K is a constant of integration which will be determined later.
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Using the relation (2.57b) and (2.53) we can write

(1 + A = XA . (2.58)

Jr
= (2.59)
Yr

and from the relation (2.57b) and (2.52) we can write
E=KEA . (2.60)

Now substitution of jr/;r from Equation (2.59) into Equation (2.54) yields

—

AB' -
= = Bi . (2.61)

W fn

i

Simplifying the relation (2.61) we obtain

= AK

where Bi is given as

EHE
Bi - (1 +ﬁ{— (2.63)

which can be rewritten as

2
(¢7H)
N

(2.64)
(e?) .

N oy

Using the relations (2.58) and (2.64) in the Equation (2.62) we can write

gf as
2 2
Gy a+y g 26
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Also we have from Equation (2.60)

dE _ . d(EA) _
a K T3 K(zA) ! (2.66a)
and
= _g__
A ) . (2.66b)

Substituting the relations (2.66a) and (2.66b) into (2.65) we get

_ (EZH)
g1 =
G

E-% . (2.67) -
Comparing the expression for Ei in (2.67) with Bi in (2.64) we see that

the quantity (£2H) on the right hand side of Equations (2.67) and (2.64)

determines the pressure gradient parameter regardless of the coordinate

system.

With these relations, we proceed to determine the relations for the
iterative scheme for determining the (E,ﬁ) coordinate system given a (E,n)
system.

If £ and 7 coor@inates are optimal then we know from Davis 10 analysis
that

EE,Mrn-C as now (2.68)
where C is a constant which was already mentioned in the earlier discussion.
C is related to the displacement function in optimal coordinates.

In general in the (£,n) coordinate system (which may not be optimal)
the streamfunction £(£,n) far from the body is given as

frn - 2(8) (2.69)
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with the help of relations (2.45) and (2.46) the Equation (2.69) can be

written as

BEm v A -fay as nse

(2.70)

Comparing the two expressions for f(E,n) given by Equations (2.68) and

(2.70) we get

=28 _ 5

€C=a@ =%

Also we can write from Equation (2.71)

age) = 28

(2.71)

(2.72)

Substituting the expression of A(£) from Equation (2.71) and its derivative

in the relations (2.59) through (2.61) we get

J

I @ EeEn' Ir
7 72 Yr
o KEL(E)
[
.and
= 2£8)

Bi = TaenT P1

(2.73)

(2.74)

(2.75)

Also we can write Jr/Yr in the present coordinate system for the boundary-

layer flow from Equation (2,.25d) as

J
.1
Yy t(t+§t£)

(2.76)

Similarly we can write an analogous expression for barred quantities as

i SO S
Yy t(t+EtE)

28
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From the coordinate relation (2.23) we can write

p=¢tt=Et (2.78)
Substituting £ and £ from the Equation (2.78) into the Equation (2.74)

we get

- g 268) (2.79)

[

el fer

Using the relations (2.76) and (2.77) in Equation (2.73) we can show that

1 2(E)(ER(E))! 1
= (2.80a)
E(E"’EEE) 22 t(t"{tg)
or
k) 2—= G =5 . (2.80b)
2 (Et)g [ ) g

Now using the relation (2.78) we can easily write, after rearranging the

equation (2.80b) as

or (2.80c,d)

which can be simplified to give

d4E _11d@E)
daE X . 3 . (2.80e)

In light of the relation for E given in Equation (2.74), the relation
(2.80e) is true if and only 1f K= 1,
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Therefore the appropriate relation and the one which can be used
is

£t _ (2.81)

t L
where t is now the needed boundary condition on the surface for the co-
ordinate function t(£,n) and % is the displacement thickness function in
optimal coordinates. The quantities t and 2(§) are the corresponding
variables in the guessed (§,n) coordinate system.

This completes the brief outline of the development of the governing
differential equations together with the required boundary conditions for
the two dimensional symmetric incompressible flow in optimal coordinates.
The details of the numerical analysis necessary to solve the given set of

equations developed in this section are elaborated on in the the follow-

ing section.
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ITI. NUMERICAL METHODS OF SOLUTION

1. Boundary-Layer Solution Method

A marching procedure is made use of in determining the solution of
the boundary-layer equations in optimal coordinates. The only difference
between the present method and the boundary-layer forward marching approach
used by numerous authors (see Blottmer and Flagge Lotz22 for example) is
that an additional iterative loop has been introduced here in order to
satisfy the condition of optimal coordinates. The coefficients
@, Br’ Y, and Jr which are functions of t, are evaluated at the surface
if they are present in the boundary-layer equation. This fact represents
an advantage of setting the iterative scheme for the optimal coordinate
condition without solving the coordinate equation in each iteration.
This implies that the surface boundary condition t(£,0) on the coordinate
Equation (2.25) can be computed once and for all by iterating the solution
vectors of the boundary-layer equations such that the transformed displace-
ment thickness function C is constant within a prespecified limit of
accuracy. To compute t(£,0) in each iteration the relation (2.81) is
used to update the surface boundary condition t(&,0).

In order to solve the boundary-layer equations, a coordinate trans-

fromation similar to that used by Vande Vooren and Dijkstr323, Dav:f.s15

and Davis, U. Ghia and K. Gh1316

is used in the £(streamwise) direction
to achieve proper resolution of the flow field in the streamwise direction.

The transformation which gives the appropriate flow field resolution is

given by
S =1 - A/ log(l + £/A) (3.1)
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where A is a constant, the value of which is chosen such that the vorti-
city, g, at the wall drops to one half the stagnation point value at

about S = 0.5, where S is the transformed coordinate. The value of A
which gives such a variation of vorticity g(£,n) at the wall is found to
be equal to 1 for the boundary-layer analysis. Apart from the advantages
mentioned above, the transformation relation (3.1) transforms the semi~
infinite domain of integration in the streamwise (£) direction into a
finite domain in the new independent variable, such that S varies between
0 to 1 as £ varies from 0 toc <.

It is mentioned by Davis15 that the vorticity g dies out exponentially
to zero beyond a value of n = 5.0 for all Reynolds numbers in the case of
laminar unseparated flow, The boundary-layer equation is therefore inte-
grated up to n = 6,0 with an uniform step size of An.

In order to solve the boundary-layer equations, the momentum equation
which 1s coupled to the normal velocity equation is linearized with res-

pect to the previous step value and rewritten in new independent vari-

ables as
Jr Jr Jr ds
F ~(—WPF+(—8)Q-FF) =E(—TF)F,——= . (3.2)
nn Yr Gn Yr iG G Yr GSdE
Then the normal velocity equation reads
ds
vn+1?+£rs dz 0 (3.3)

where the subscript G stands for the guessed value of the dependent vari-

ables from the previous station or iteration.
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An implicit finite difference scheme similar to that given by
Blottner and Flﬁgge-Lotz22 is used to solve the parabolic momentum
Equation (3.2). Once the momentum equation is solved the continuity
equation is integrated with respect to n once to obtain the updated
value of V to be used in the subsequent iteration of the momentum
equation. In the numerical scheme, the Fn and an derivative terms
are written in second order accurate central difference form and the S
derivative is written as a two point backward difference. Application
of such a scheme to the momentum Equation (3.2) results in a tria-
diagonal system of equations in the n direction at each grid line given
by § = constant. The Thomas algorithm24 is employed to invert the set of
simul taneous algebraic equations. The momentum and the continuity
equations are solved simultaneously. The solution vector is iterated on
due to the nonlinearities until the values of the solution obtained in
two successive iterations do not differ by a prespecified accuracy limit.
Repeating these steps at each grid line at S = constant, the solution
procedure is marched from S = 0 to S = 1 to cover the entire semi~infinite
domain in the streamwise direction. In order to initiate the marching
process we need the initial profile of the solution vectors F and V at
£ = 0 and also the value of the displacement function % in optimal coordi-
nates in order to calculate t(£,0) along the surface of the body. The
displacement thickness in optimal coordinates and the starting values
of the solution vectors F and V at the stagnation point are determined

in the following manner.
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It was already mentioned in the Section II on the asymptotic boundary
conditions for the coordinate Equation (2.25) that the optimal coordinates
become conformal at downstream infinity. This implies that the displace-
ment thickness function 2(£) at downstream infinity is the displacement
thickness function L in optimal coordinates. Therefore in order to de-
termine the displacement thickness fumction I the boundary layer Equations
(3.2) and (3.3) are solved at downstream infinity. As £ - =, the boundary-

layer equations yield the similarity form as given below.

2
an - V?n +8(Q ~-F)=0 (3.4)
and

vn +F =0 (3.5)

where 8 assumes a value equal to zero for the bluned plate case and
B = 28/w for the blunted wedge problem,

The above set of Equations ((3.4)-(3.5)) can easily be solved with
the boundary condition prescribed by Equations (2.4la,b) and (2.42).
Now writing the derivatives an and Pn in central difference form a set
of triadiagonal system of equations are obtained and these can easily be
inverted by applying Thomas algorithm. Once the solution is obtained,
the displacement thickness % is calculated using the Equation (2.40).
Finally, the initial profiles of F and V are obtained by solving the
boundary-layer equations at § = 0; Again we note from Equations (3.2)
and (3,3) at £ = 0, that the boundary-layer equations assume a similarity
form because of the symmetric condition ?E = (0 along the the stagmation

line, The equations at the stagnation line, i.e, at £ = 0, reduce to
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- EE VF + iE a- pz) =0 (3.6)
Mmooy, N Y,
and
Vn +F=20 (3.7)

with the boundary conditions

F=20
atn=20 (3.8a,b)
V=20
and
FAl as n » > - (3.8¢)

The Equations (3.6) and (3.7) can easily be solved in exactly the same
manner as in the case of downstream infinity, But in this case the
solution of the boundary-layer Equations (3.6) and (3.7) has to be iterated
on to satisfy the condition of optimal coordinates, in addition to the
iteration required for the nonlinearity of Equation (3.6). Once the init-
ial profile is obtained it is now possible to compute the solution of the
Equations (3.2) and (3.3) in the entire flow field by using a forward
marching process. After the determination of t(§,0) at all of the grid
points on the surface, the coordinate Equation (2.25) can be solved.

The details of the numerical analysis for the coordinate Equation (2.25)
s discussed in the following.

2. Optimal Coordinate Solution Methed

The coordinate equation as given by (2.25) is elliptic in nature

and requires four boundary conditions of which three are already specified

i
!
by the Equations (2.27) through (2.28a,b). The fourth boundary condition i
is determined from the flow equations as mentioned in the preceding section. i




Because of the elliptic nature of the equation an alternating direction
implicit (ADI) method, first developed by Douglaszs, is made use of to
obtain the coordinate equation solution. In order to apply the ADI
scheme a fictitious unsteady term 3t/3v is added to the right hand side
of the Equation (2.25). The resulting equation is marched in time and
alternated with respect to the independent variables £ and n:cat each half
time step. The steady state solution is recovered in a two step process
to obtain the asymptotic converged solution of the unsteady differential
equation. Recognizing the fact that the transiekt solution is of no
importance for the present analysis, certain measures are taken in order
to achieve faster convergence, TFor e#ample, the coefficient of the term
9t/3v is set equal to different constants for different problem parameters
to improve the convergence rate of the ADI scheme.

A transformation of the independent variables is made in order to
confine the domain of integration to a finite region besides providing
the proper resolution in the n and £ directions and preserving the
uniform step size accuracy in the computational domain.26 The trans-
formation relations which serve these purposes are given in the following
for the n variable and in (3.1) for the £ variable. The variable n is

replaced by

-
N==3 . (3.9)

In Equation (3.1) the constant A as mentioned previously is chosen equal
to 1. The transformation (3.1) together with (3.9) transform the quarter

infinite domain in (£,n) coordinates to a unit square in the computational
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domain of (S,N) coordinates. Using these transformation relations the

coordinate Equation (2.25) is rewritten in new independent variables

(S,N) as
2 2 28 o
dN d™N r dN, .dS T
=) + —_— - — ) +—
v (an N an? ¥y SN tdn’taE’ Ty
2 a 2
2ds , d°s r ds,” _ at
Gae* dgz)tS + Y, ts @ " - 3.10)

The subscripts S,N in the Equation (3.10) represent the partial differ-
entiation of the dependent variable with respect to the independent
variables appearing.

The cross derivative term tSN in the coordinate equations needs a
special treatment because it plays an important role in the numerical
solution of the coordinate equation. The cross derivative term appears
in the equation because of the non-orthogonality of the (£,n) coordinate
system, Tne coordinate system depends on the displacement effect. The
magnitude of this cross derivative term is also an indication of the
degree to which the optimal coordinates are non-orthogonal, i.e. vary from
conformal coordinates in this case. ©One must also be careful in formu-
lating the numerical scheme for the cross.derivative since it is well
known that the cross derivative if improperly handled can cause numerical
instability.27 In many situations this term is small and can be treated
explicitly28 in an otherwise implicit scheme. In the present analysis,
in order to be consistent with the numerical scheme, an implicit treatment
of the cross derivative has been developed using a three level finite

difference scheme similar to that followed by Mitchell.29 This type of :
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the treatment of the cross-derivative term allows one to break the single
term tEn into combinations of unidirectional derivatives with respect to
the independent variables £ and n. The cross derivative tEn is written

using the three level grid points as shown in Figure 2. Then the cross-

derivative at the grid point m,n can be expressed in second order accurate

difference form as

AN AN
t = [~DF — + DF —
£n AS ‘anm’n is tmxlm_l’n

1 AS
+ 25 ™ 285 °% DF 7§ tss
[m’n Im-l, Imyn
1
_2F LD s
3 3 2
¥ 5L N USS) o
(0F = 3) (OF + & i
+ ¢ + 22,
AN Sm,0e1 2 aNESs)
oF %) 1( ) (3.11)
—_— J(N s . .
4N S m,r+l ng

The other terms in Equation (3.11) are written as three point central
differences. It can be shown that in order to maintain diagonal dominance
in the inversion scheme, DF should be taken equal to 0, 1/4 or - 1/4
according to whether the coefficient of the tEn term in Equation (3.10)
is zero, positive or negative. Keeping track of this property provides
stability to the system. The ADI mmerical method of solution using this

difference scheme is described in the following.
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During the first half time step, denoted by the star (*) step, the

ADI algorithm for the coordinate Equation (3.10) is advanced from time

vtov =v + 5 by the following relation:

B 8
2 r ., AN * r 1, . *
(N + 2 T DF S N Sty + (N - 2 Y, NS, 539ty

8 a a
TPy +2 g 4+ I )t
Yy AN n"§ & Ve

+ (4
ar
+(Es
Yr

2
g

8
r AS n
+ 2 Y. DF N NnSE)tSS

B 8
T AN r 1
2 Y NnSE DF G tNN + 2 Y, NnSE 575 tN

T jm-1,n |m-1,n

1
(DF - z) as . B

-—-222EyNsg¢
2 AN Sy, eSSy,

oF -3 8
- —g 27 NSt
Yr 7 |m,n-1

(OF + ) 8
2 Yl‘ n & AN Sslm

- (3.12)

where Av is the time step.
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The starred (*) quantities in Equation (3.12) are considered to be
unknown whereas the dependent variables with superscript n are assumed
to be known from the preceding half time step (n). The Equation (3.12)
is solved along lines of constant S or £. Writing the ty and tyy terms
in central difference form, the Equation (3.12) can be shown to reduce
to a set of simultaneous equations in triadiagonal form. These algebraic

equations can be inverted by applying the Thomas algorithm.

During the second half time step, Equation (3.12) is marched forward

*
tc a new time level vn""1 =v + %! using the relation given below:
B 8 a
O 2 AS n+l r DF 2 °r
(—s + 2= DF—NS)t + (b —=-=——NS, +=-=L35
Y, & Yy AN "n"g Y, (AN) "n°e " £y 7€
a B
T n+l T
+ 7 s )t (Nnn -2 Y. NnSE 2(AS))tN
+ (N ZBrNSDFAN)t* (ZBNSDF())
m T Y] TnE>t A8’ tNN Y, ST g
1
B (OF - )
T 1 47 AS r
+2—=NS_ =t -——— (=) 2 — NS_t
Yo n e 208) N, 2 AN Ty, TnETSS |
(OF -~ ) B
- N
AN Y nsgtslm n~1
b4
B, (OF +7 RS
-2—N SET ts i e (3.13)
Y 7 |m, n+1

40




|

where the starred (*) quantities are known from the previous half time

step calculation and the dependent variables with supe?script (n+l) are
considered to be unknown in the Equation (3.13). Writing the derivatives
tSS and tS in second order accurate central difference form, the differential
Equation (3.13) can be solved in an identical manner to the star (*) step. The
solution procedure for the coordinate equation alternates between the
constant £ and constant n directions in one complete time step. The

steady state solution is achieved as an asymptotic converged solution

to the unst;ady Equation (3.10).. Since the initial guessed coordinates
assumed for the iteration procédure are assumed to be conformal, the

initial conditions for t(f,n) at each grid point is taken to be 1.

Next we discuss the mumerical solution of the Navier-Stokes equations
in optimal coordinmates. However, rather than solving the complete equa-
tions we solve a parébolized vérsion. The solution of the complete equa-
tions should follow in a similar manner.

3. Solution of Parabolized Navier-Stokes Equations

The parabolized vorticity and streamfunction equations unlike the
boundary-layer equations, are coupled with the coordinate equation because
the coefficients s Br’ Yr and Hr are no longer functions of £ only but
are functions of n as well. This fact calls for the simultaneous treatment
of the flow Equations ((2.29)and (2.30)) and the coordinate Equation (3.10).
Therefore, the iterative scheme described in the case of boundary-layer
analysis is modified slightly to accommodaté the simultaneous treatment
of the flow equations and the coordinate equation; Details of the scheme i

are presented in the following.
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In order to solve the vorticity and streamfunction equations more
efficiently transformations of the independent variables are made. The

transformation relations are the same as given in case of the coordinate

equation and are given by the Equations (3.1) and (3.9). The only differ-

ence in the use of the relation (3.1) for the case of parabolized Navier-
Stokes analysis is in the value of the constant A, which, in this case

is chosen to be 4.0 + 0.4 9, where q, = iw YRe . Re is the Reynolds
number b;sed on the nose radius of curvature, a and aw is the value of

q at the wall. The dependence of the constant A on Re, in the stream-~
wise stretching is introduced in order to achieve the desired flow field
resolution in the streamwise direction for different Reynolds numbers.
The transformation relation (3.9) in the n direction has a viscous type
stretching built into it, such that it always places the viscous layer

in approximately the lower half of the unit square region of integration

while the inviscid flow is contained in the upper half, This type of flow

field resolution in the n direction is appropriate in light of the fact
that for all unseparated flow cases, as was mentioned in the case of
boundary-~layer analysi;, the viscous effects are confined within the
region n < 5 or in the transformed variable N < 0.5, The transformation
relation (3.9) therefore allows one to obtain proper grid spacing in the
physical flow field near the wall, where the gradients of the flow vari-
ables are large as compared to their asymptotic values far away from the
wall. Various other advantages of the transformation relations (3.1)

and (3.9) are elaborated on in the case of boundary-layer analysis and

will not be repeated here.
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Because of the boundary condition £ + n -~ C as n > », a new stream-

function h is defined such that

f=h+n (3.15)

The steady state streamfunction-vorticity equations in the transformed

variables can now be written as

[

2 - -
(Nn) hNN+Nnn(1+hN) g (3.16)
- and
2 5 By HS J1:
NngNN+ [2H Nn--Z,Yr SEH +Yr (n+h+EhSS£)
NH.N2 8 HH o S.H 2
n N _,x s L (ES
+Nnn]gNNn+[(H 27 SENn 2 +y (H )
r H r
T TR B S A . N S S
3 nH Ey, &H £ n 'y Ey., &y
T r r N r r S
2
8 J N _ J ES H
+%(—r-) +—’—3—H3(n+ﬁ+ss€hg)-—r(1+—-§—s—)
£ ~Yr r Yr
a_ S, H B NH.N
& r 8 _o, r nN =
(1+hNNn)]g+[2 Y, " 2Yr " ]SEgg 0 . (3.17)

The corresponding boundary conditions are given in the following. The

no slip and zero injection conditions on the surface give

h=0
and at n =0 (3.18a,b)
h =-1
n
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The infinity boundary conditions are given by

h ~o
n
and as n—+o (3.19a,b)
gg,n) O
At £ = 0, symmetry is made use of to compute the vorticity and streamfunction
along the stagnation plane.
The asymptotic boundary condition as £ + « is given by Equation (3.16)

along with (3.17) evaluated as £ » », Equation (3.16) remains the same

whereas (3.17) reduces to
2 - -
(Nn) g t (h+h+ l)NngN + (1 -280Q1Q + hNNn)g (3.20)

where B8 is the Falkner-Skan pressure gradient parameter and is a known
quantity for a given problem,

It is observed from Equations (3.16) and (3.17) that the streamfunction
and the vorticity equations are second-order partial differential equations
with respect to n. Therefore two boundary conditions for each of the
dependent variables h and g are needed in order to integrate the equationms,
There are three boundary conditions on h and one boundary condition on g.
These type of boundary conditions are not the most convenient ones for the
Thomas algorithm. However, the solution to the flow equations can be
obtained by a superposition method as described by Davis, U. Ghia and

16

K. Ghia,” by determining a coe-ficient C1 such that

g(g,n) = CigpE,ny + 8p(E,n) (3.21)
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with C., given by

1
3(h
( pz)
1+ —
¢, =- — (3.22)
ah )
51
an

where gy and gp are the homogeneous and particular solutions respectively
of the vorticity Equation (3.17) and le and Epz are the particular solu-
tions of the streamfunction Equation (3.16) corresponding to the forcing
function gH(E,n) and gp(E,n).

The governing flow equations are therefore integrated along the
curves of constant £ for all n, using the implicit finite difference
method of Blottner and Fl;gge-Lotz22 as described in the case of boundary-
layer analysis. Once the required convergence is achieved on the solution
vectors, the t(£,0) value is updated using the iterative relation (2.81).
With this surface boundary condition distribution on t, the coordinate
equation is integrated employing the two step time dependent ADI relaxation
method, as described previously in boundary-layer analysis. The converged
solution is then stored to calculate the new values of Jr’ @ s Br, and Hr
to be used subsequently in the flow equations. Before starting a new iter-
ation in the flow equations after this step, the edge quantity h(f,») is
checked for satisfaction of the condition of optimal coordinates, i.e.
2(¢) - C, a constant. If this condition is not satisfied within a pres-
cribed accuracy limit, then the entire cycle is repeated to calculate a

new set of values for the solution vectors g, £ and t.
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This completes the method of solving the flow equations in optimal
coordinates including the generation of the optimal coordinates. The
application of the analysis to specific problems is discussed in the

following section.
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IV. APPLICATION TO SYMMETRIC TWO-DIMENSIONAL FLOW PROBLEMS

In order to demonstrate the application of the principles described
in the previous sections we will generate the solutions for two-
dimensional incompressible laminar symmetric flow. Two geometries are
considered as examples; the flow past a semi-infinite wedge, and the
flow past a semi-infinite thick flat-plate, see Figures 3a,b and 4 and 5
respectively. Boundary-layer as well as the parabolized vorticity-
streamfunction form of the flow equations are used for the present

analysis. Details of the analysis are presented in the following.

1. The Blunted Wedge Example

The two dimensional incompressible flow past a semi-infinite wedge
as shown in the Cartesian plane in Figure 3a is considered here. The
axis of the wedge is oriented in the direction such that the flow is
symmetric about the wedge axis. The body surface in the physical plane
as shown in Figure 3a is mapped to the line q = 0 and the corresponding
flow in the physical (x,y) plane is mapped into a stagnation point
type flow which is the upper half of the , plane (see Figure 3b). This
type of mapping is achieved by applying a Schwarz-Christoffel trans-

formation which results in

2
v (n+l n+l
2 Ur 2 4 (4.1)

where 7 = q + ip. The scale factor of the transformation is given

by




2 2 1l-n
2 dz v 2 2,14
h |d§| (Ur) |q“ +p°] . (4.2)

The factor v/Ur appearing on the right hand side of Equation (4.1),
non-dimensionalizes the coordinates q and p. The n, appearing in the
exponent of the transformation relation (4.1) is related to the semi-

wedge angle § as
n=—F . (4.3)

Recognizing that the point (yo,O) transforms to the point (qw,o),
(see Figures 3a and 3b), the nose radius of curvature a can be written,

using Newton's formula, as

2
14 l4m v
a= G U (4.4)

where q is equal to q, at the wall. Defining the Reynolds number based
on the nose radius of curvature such that Re = Ura/v, it can be shown
from the relation (4.4) that the location of the wedge surface in the

transformed plane is given by

Lin

q, = [Re 32 2 . (4.5)

It 1{s observed from the equation (4.5) that keeping the Reynolds
number Re constant, the effects of body shape on the flow can be studied
by changing n, whereas keeping n fixed, the effects of Reynolds number

on the flow can be investigated by varying Re.
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It will be shown later that the conformal transformation used
here to transform the physical flow field into a stagnation point flow
in the conformal plane, allows one to obtain similarity type variables
and similarity solutions are recovered whenever similarity exists.

In addition, the downstream boundary conditions at infinity are
automatically satisfied. The mapping also allows one to obtain simpler
boundary conditions in relating the optimal (£,n) coordinates to
conformal (p,q) coordinates.

Since the numerical calculation is to be carried out in optimal
coordinates, the transformation relation can be rewritten in optimal
coordinates. Using the coordinate relation given in Equatioms (2.23)
and (2.24), the transformation relation reads in optimal coordinates

as
2

in n o eyl (4.6)

N
z2=7 77 ¢
r

|3

and the scale factor h is given by
2 l-n
2
h? = G 11D + (&) . (4.7)
T

It can be shown that the similarity solutions are recovered in the case
of a blunted wedge in terms of the present variables £ and n if the

exponent n 1is related to the Falkner-Scan pressure gradient parameter

I 8 given by
2n
l 8 = T1m . (4.8)
| s
w—mrv,'wwm greo T ——




It is interesting to note that the mapping given by the Equation (4.6)
yields the limiting cases of the thin flat plate and the vertical
wall when B = 0, Re = 0 and 8 = 1 and Re # 0 respectively.
The scale factor of the transformation in optimal coordinates
is rewritten in nondimensional form as
1-8
= @ r g b : (4.9)
It is important to note that the independent variable n is defined
here (i.e. in Equation (4.9)), in such a way that n = 0 corresponds
to the value of the conformal coordinate q at the wall and it is
denoted by q,- With this new definition of the independent variable n,
the body is always placed at n = 0 in the optimal coordinate plane
and n = C represents the displacement surface in optimal coordinates.
The additional relations required for the solution of the governing

differential Equations (2.29) and (2.30) are given as follows

_ 22 .2 n -0
hj-’ (1-8) [&°t +€t€t+(t"‘qw)( t2 ta)] (4.10)
h (g% + @+ g7
and t
_ 2 n 1_,32
_:_n i (1-8) [E7e e+ (T +q)(F - n )] . (4.11)

22 n 2
[(E"t)+ (-E*'qw) ]

Along the stagnation streamline, i.e. £ = 0, the term hE/Eh appearing
in the HE/EH term in the vorticity Equation (2.30) becomes undefined

and hence, must be evaluated with the proper limit process.
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The limit process gives

h h

lim (Eg = Eé;
£-+0 £=0
Hence, ) nz n
b (1-8) [t” - :Z + :3—) t tEE]
_&& = . (4.12)
B le=0 (@ +D?2
W7

In order to performa the boundary-layer analysis for the blunted
wedge oroblem, the coordinates are normalized with respect to the
nose radius of curvature a, at the stagnation point, such that the
wall location of the blunted wedge surface is given as

1
9y = ;;l = (1-6)2-6 (4.13)

2
a

This type of normalization is adopted in order to remove the explicit
apperance of the Reynolds number Re from the analysis.
The scale factor of the transformation can then be written as
1-8 .
s e (4.14)

and the inverse scale factor H is given by

H 2
H(E,0) = —% = ——E — . (4.15)
h2 (qi + E2t2)1 8 n=0
51
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Now the pressure gradient parameter Bi’ appearing in the boundary
layer equation is given as

(8-1) tg2 (c,6+0) &

g, = [1 +— =
(qi + €2t2) t "n=0

(4.16)

This completes the necessary details required to solve the flow equations.
The cooredinate equations required to generate optimal coordinates
are given by Equation (2.25) and the three boundary conditions are
given in Equations (2.27) through (2.28a,b). The fourth boundary
condition t(£,0) 1is to be determined iteratively and the iterative
scheme required to compute the missing boundary condition is given
in detail in Section II.
This completes the mathematical formulation of the blunted wedge
problem in optimal coordinates. The details of the numerical method
used to solve the governing differential equations are presented in

Section III.

2. The Blunted Plate Example

In this example problem, two dimensional symmetric flow past a
semi-infinite blunted plate is obtained in optimal coordinates. The
body geometry is shown in the physical (x,y) plane in Figure 4. The
body is mapped to the line q = 0 in the conformal plane r;, as shown
in Figure Figure 5, by applying the Schwarz-Christoffel transformation

and results in a relation given by
2LU

b

dz r 2.1/2
iz ( p— z) (4.17a)
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Integration of (4.17a) gives the transformation relation

UL 1/2 2U L
z=2cd 20 hH 4+ E et () (4.17)
2U L
J/ r
vT

The x,y coordinates are nondimensionalized by the viscous length v/Ur
where v is the kinematic viscosity and Ur is some reference speed.
Since the mapping is conformal, the scale factors in both directions

are the same and are given by

2
2 _ .2 _ .2 _ dz
h® = h] = h; = |51 (4.18)

which gives for the present geometry

1/2
n? = [(p2 + ¢° - ReL)2 + 4Re, q°] (4.19)
where
UL
T 2
ReL v T

The Reynolds number is defined based on the nose radius of curvature
as Re = Ura/v.A The nose radius of curvature at the stagnation point
can be shown to be related to the thickness of the plate L, by the

following relation

2.3/2
(Re, + q)
am——L % (4.20)

q,

where q, is the coordinate q at the body surface. The flow past

different body shapes can be studied by a suitable combination of the
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parameters Re. and q.s whereas the effects of Reyrolds number can be

L
studied by varying Re, keeping ReL and q, fixed.

The conformal mapping used here transforms the flow in the
physical (x,y) plane into a stagnation point flow in the conformal
(p,q) plane. The advantages of this type of transformation are the
same as mentioned in the blunted wedge example problem.

It is interesting to note that as a limiting case, as Re. =+ 0,

L
the transformation (4.17b) represents the flow past a parabola which
corresponds to the flow past the thin semi-infinite flat plate in the
physical plane. Therefore the analysis includes the flow past the

L

The governing differential equations and the boundary conditions

thin semi-infinite flat plate as a special case as Re, - 0.

remain the same as given in the previous example problem by Equations
(-.5) through (2.81), except that in order to recover the correct
asymptotic form at downstream infinity, the value of 8 in Equations
(2.18) and (2.44) is set equal to zero to give the Blasius equation,
which is the appropriate downstream boundary condition for the blunted
plate problem.

The scale factor h, in oétimal coordinates can be written as

2 2 n 2 2 n 21/2
h(E,m) = [(£°t" + (¢ + D - Re) +4Re(q +P 1 . (421
The additional relations required for the parabolized vorticity-

streamfunction Equations (2.29) and (2.30) are given as
H Y

H = _;L = % (1_2.) , (4.22)
h J h
r
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which can be written in optimal coordinates as

g

Y, 1
A&y = Ji [(€2t2+ (qw+-:-)2-ReL)2+ z;ReL(q,';I-%)ZIU2 ' (422
Also,
h [£2% + (qw+%)2-—ReL)(tthz+ t%g - (q,w+—'tl) (? tg))- 2ReL(qw+%)% tel
O (g% + (qw+%)2—ReL)2+loReL(qw + —'tl)?'] 4.28)
and
h, ree?+ (q,+D°- ReL)(tnt£2+ (qw+%)(%--:%))+ 2Re; (q_+D) (%—:%)]
B [(e2e2+ (qw+%)2- ReL)2 + 4Re (q_+ —:—)2] '-

(4.25)

As previously, we need the following limit expression. Lim £ + O
hE/Eh can be shown to be equal to
2 2_ oy A - nyn_
[((q +)"-Re )t (qw+t)(2t£g)) 2Re; (q +7)75 €]

h h 2
1im (—‘igh) = hm - - t e
= n
£0 |£=0 [(a, + D2 + Re,]

(4.26)

For the boundary-layer analysis the coordinates (x,y) are normalized

with respect to the radius of curvature a. Then the transformation

relation (4.17b) in nondimensional form becomes

z -% [c(1:+r,2)1/2 +b sin t (Lll—z—) (4.27)
b

PN

where

L

2L

b=— . (4.28)
Ta

1
i
]
{
t
1




Now defining o = qw/all2

and substituting into the radius of
curvature expression, we can show that the body shape parameter a, in
the conformal plane, is related tc the thickness of the plate in the

physical plane by the relation

o232 b 4 o2 ) (4.29)

The shape of the body for various values of the parameter ao, is shown
in Figure 6. As a special case of the parameter a = 1, the trans-
formation relation (4.27) gives flow past a parabola.

The scale factor for the boundary-layer in optimal coordinates

is written as

4/3,1/2

B2 = [%? + 2622 (202 - o3y 4 043 . (4.30)

The governing differential equations for the boundary-layer analysis
are the same as given in the previous example problem by Equations
(2.37) through (2.45) except that in the downstream infinity condition
(2.44), B is set equal to zero to give the appropriate dowmstream
boundary condition for the blunted plate problem.

The remaining relations required for the boundarye-layer solution

are
B -1/2
o= L= (0t 2e2 a2 - a2 B 403 T 0 (4.31)
h n=0
56




2/3

b €(£3t4 + £4t3t§+ (Etz + 52t:£) (24% - o2/3y) £,
B, = [1 - + ]
i (ec® 4 2622 (202 - 02/ + o3 £ n=0
(4.32)
and
Ho= X . 2,0 (4.33)
r ;2 = ’ . :
r

As was mentioned in our first example problem, the coordinate
equations in this case remain the sa;e as were given by Equations
(2.25) through (2.28), except for the surface boundary condition t(£&,0).
Details of the determination of the surface boundary condition t(&,0)
are presented in Section ¥I of this analysis.

This completes the mathematical modelling of the blunted plate
problem. Details of the solution procedure are discussed in the

section on numerical method of solution. The results of the present

analysis are discussed in the following section.

[
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V. RESULTS AND DISCUSSION

In the present study an effort has been made to demonstrate
that a set of optimal coordinates dependent on the displacement effect
can be generated numerically for two-dimensional symmetric incom-
pressible laminar flow past blunt and sharp nosed bodies. Various
critical aspects of the viscous flow analysis in optimal coordinates
for high as well as low Reynolds number were discussed in the previous
sections. The present investigation is therefore viewed as an initial
step for generating flow dependent coordinate systems numerically.

The present analysis has provided us with useful information in order
to understand and investigate the inviscid and viscous interaction
problem in a different manner.-

Present calculetions were confined to flow past semi-infinite
bodies under conditions such that separation does not occur. The
reasons for choosing such body shapes are firstly, because they are
the easiest ones to analyze, flows involving separation, for example,
being much more difficult., Secondly, for comparison purposes the
simple body shapes such as a parabola, vertical wall and thin flat
plate, possess previously obtained accurate analytical or numerical
solutions which can be used as a basis for comparison.

The solutions were obtained using the governing differential
equations developed for the example problems in Section II and numerical
technique described in Section III. The solution steps for the coupled

set of flow equations and the coordinate equations are presented in
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Figures (7-9). The results for specific example cases are discussed

in the following.

1. Boundary Laver Results in Optimal Coordinates

la. Blunted Wedges:

In the mathematical formulation of the wedge problem for the
boundary-layer anaiysis in Section IV, it was shown that the flow past
different blunted wedge shapes can be charz:terized by a single
parameter B, related to the slope of tﬂ; wedge at downstream infinity,
where B8 is the Falkger-Skan pressure gradient parameter. In the
present analysis, boundary-layer solutions are obtained for B
between 0 and 1, where B = 1 represents flow against a vertical wall,
commonly known as Hiemenz flow and 8 = 0 represents the flow past a
parabolic cylinder.

Plots of the pressure gradient parameter Bi’ for various values
of the downstream Falkner-Skan pressure gradient parameter B are
presented in Figure 10. Figure 10 shows that the pressure gradient
for the case of the parabola approaches zero at downstream infinity
and therefore the Blasius solution for flow past a flat plate is the
correct solution asymptotically at downstream infinity, Figure 10
also shows the Bi distribution for other values of the downstream
Falkner-Skan parameter 8 which corresponds to increasing the downstream
asymptotic wedge angle. If the downstream wedge angle is increased
to 90°, the Hiemenz flow or the flow past a vertical wall is obtained
and the pressure gradient parameter becomes constant over the wall

surface for this flow.
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The streamwise distributions of the skin-friction coefficient
g(p,aw) are shown in Figure 11 including flow past the parabola
given by B = 0. For all values of B, the skin friction coefficient
attains at the stagnation point a value of 1.233 which is the exact
value of skin friction coefficient for the stagnation flow against
a vertical wall. For the case of a parabola, the skin friction approaches
the flat plate solution at downstream infinity. This is as it should
be, since the apptéfriate downstream flow in the case of parabola
is governed by the Blasius flat plate solution. With increasing 8,
the skin friction coefficient approaches the corresponding Falkner-

Skan solution at downstream infinity. Observe that for 8 = 0.7,

the skin friction profile is very close to that of the flow against a
vertical wall, giving an indication that the flow is approaching the
stagnation flow.

The displacement thickness functions for B between O and 1 are
obtained in optimal coordinates and their values in conformal coor-
dinates are shown in Figure 12. Displacement thickness results obtained
at the stagnation point show very good agreement with those of
Davis15 as well as those of Van Dyke.9 The displacement thickness
for the case of a parabola also approaches asymptotically the appropriate
value obtained for the Blasius flat plate solution at downstream
infinity. As expected, the displacement thickness approaches a
constant value as the downstream wedge angle is increased by increasing
the value of Falkner-Skan parameter B to 1. Since the displacement

thickness in conformal coordinates is constant, according to optimal
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coordinate theory, the conformal coordinates for stagnation flow
(i.e. for B = 1), are optimal coordinates.

1b. Blunted Plates:

It was previously shown in Section IV (see Figure 6) that for
boundary-layer analysis, the flow past the blunted plate is characterized
by a parameter a. Various body shapes for the blunted plate problem
are shown in Figure 6 with their corresponding values of the parameter a.
In the blunted plate case, a = 1 represents a flow past a parabola
and a = 0 represents the flow past a semi-infinite thick plate with
sharp corners. This type of blunt body is considered in order to
study the displacement flow past bodies with smooth as well as blunted
shoulders and to investigate the effects of such convex corner flows
on the optimal coordinate configuration.

The surface skin friction distributions shown in Figure 13 are
presented for the bluntness parameter a between 0.2 and 1. The skin
friction variation for flow past the parabola has already been discussed
in the case of the blunted wedge problem and the results of the same
are presented here for the sake of comparison with the skin friction
variation for different values of the parameter a. Figure 6 shows
that decreasing the value of the parameter a, results in a body shape
having larger curvature around the cormer. The viscous flow past such
bodies would experience larger and larger turning angles around the
corner. This fact is displayed in the skin friction plots, which show
that with decreasing values of a, the skin friction shows an earlier

drop, larger gradients, and a smaller region of adjustment to the
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downstream infinity value as compared to the skin friction variation
for flow past a parabolic surface. Similar features are also displayed
by other flow quantities such as pressure gradient and displacement
thickness for decreasing values of o, in Figures 14 and 15 respectively.
These characterstic features of the flow quantities such as are shown
in the skin friction and the displacement thickness are consistent
with che pressure gradient plots obtained for the viscous flow past
the corresponding body shapes, represented by the parameter a. One

of the flow cases which we will study further is the flow past a
blunt body represented by o = 0.2 which will turn out to be a case
near separation. A classical boundary-layer analysis of flow past a
body which is represented by o less than approximately 0.2 would
indicate the occurance of flow separation aft of the corner. This

fact has previously been observed by Davisl4 in his interacting flow
analysis for high Reynolds number flow past a body represented by

a = 0.1. Considerable numerical difficulties were encountered in order
to obtain converged solution for the flow past a blunt body given by

o less than 0,2. The pressure gradient parameter in such cases reaches
limiting values below -0.199 and the shear stress drops to zero with
an infinite slope aft of the corner indicating the omset of separation
at that point and no solution could be achieved beyond the separation
point indicating that the present solution technique must be modified
if one wishes to compute separated flows correctly. We will see in the
later part of our discussion that the optimal coordinates for the case

of a = 0,2 exhibit critical behavior for this near separated flow case.
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lc. Optimal Coordinates for Blunted Wedges and Blunted Plates:

It was mentioned in the preceeding section that the displacement
thickness is constant for flow past a vertical wall (Hiemenz flow).
The condition for optimal coordinates requires that the displacement
thickness should be constant in optimal coordinates. This implies
that the conformal coordinate system should be optimal for the
stagnation flow. The validity of the statement is justified from
the fact that the coordinate equation for optimal coordinates yields
a constant solution equal to 1 for the coordinate function t(&,n)
in the entire flow field.

The optimal coordinate (£,n) system and the conformal (p,q)
coordinate system for values of the wedge parameter B between 0.7
and 0.0 are presented in Figures 16 through 18. The optimal coordinates
for the wedge parameter 8 = 0.7 show little difference from the
conformal coordinate system as shown in Figure 16a because the flow
represented by 8 = 0.7 has characteristics very close to stagnation
flow. The differences betweea the two coordinate systems disappear
as we go far from the body which is obvious from the coordinate plots
of Figure 16b for flow past the same body shape. With a decrease of
the wedge angle at downstream infinity, thereby decreasing the para-
meter B, the initial differences between the optimal coordinates and
the conformal coordinates near the surface of the body increase and
this difference dies out as we go far from the body. This can be
seen in the optimal coordinate plots shown in Figures 17a and 17b for

the flow given by the parameter B = 0.5. Another interesting feature

o R BN e
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displayed in the optimal coordinate plots for 8 = 0.5 in Figure l7a
is that the variations in the n direction are larger than the
variations in the £ direction. Similar features are also exhibited
in the optimal coordinate plots for B = 0.3 as shown in Figures 18a
and 18b except that the optimal coordinates show larger initial
differences with respect to the conformal coordinates near the body
surface. This difference subsequently disappears as the downstream
conditions are reached. The optimal coordinates for the flow past
the parabola are presented in Figures 19a and 19b. The optimal
coordinates approach the corresponding conformal coordinate system
asymptotically at downstream infinity. This characteristic of the
coordinate function is in complete agreement with the asymptotic
approach of the downstream condition of the displacement flow past a
parabola.

Next, the optimal coordinates are obtained for blunted plates
for various values of the parameter a. Typical optimal coordinates
are presented for a in the range between 0.2 and 0.7 in Figures 20
through 23. The plots of the coordinates near the surface of the
body are shown in Figures 20a, 2la, 22a, and 23a, There are larger
differences between the optimal coordinates and the corresponding
conformal coordinates near the surface. The differences between the
two coordinates, as anticipated, disappear near downstream infinity.
This is clear from the plots of the coordinates shown in Figures 20b,

21b, 22b, and 23b. Also the gradients of the curve represented by
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£ = C (where C is a constant), near the surface and around the
shoulder region decrease with an increase of shoulder bluntness of
the blunt body.

2a. Parabolized Navier-Stokes Results in Optimal Coordinates:

The parabolized vorticity-stream function results are obtained
for the blunted plate and the blunted wedge problems for low as well as high
Reynolds number cases. The numerical solutions are obtained with a
step sizes of AS = 1/40 and AN = 1/100. For a few cases of the
problem parameters, the solutions are obtained with larger step
sizes of AS = 1/20 and AN = 1/60. In order to solve the coupled set
of coordinate and flow equations two different approaches of treating
the partial differential equations were explored. 1In one case
the solution of the parabolic vorticity-stream function equationms,
and the * (star) level step of the ADI scheme to solve the coordinate
equations are carried out simultaneously. At each station represented
by £ = constant, the condition of the optimal coordinates is enforced
before advancing to the next station in the streamwise direction.
During this operation the (n+l) level coordinate distribution is kept
unaltered. Once the condition of optimal coordinates is satisfied by
the edge quantities of the flow equation in the entire flow field,
the (n+l) level step of the ADI scheme is performed. The above steps
are repeated to obtain the converged solution of the coordinate
equation.

In the second approach the flow equations are uncoupled from the

coordinate equation iteration by linearizing the coefficients dependent
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on the coordinate function t(£,n) by using the preceding iteration
value of the coordinate function. The condition of optimal coordinates
is not checked until the coordinate solutions are iterated to give

a converged solution. The flow charts of both the numerical approaches
are presented in Figures 8 and 9.

The first scheme described here was very successful in obtaining
accurate converged solution for the blunted wedge cases. Considerable
difficulty was encountered with this scheme in obtaining solutions
for the blunted plate problem. However, the second scheme was
successful in achieving converged solutions for the blunted plate cases.
In general, both schemes displayed poor convergence on the coordinate
equations for high Reynolds number flow cases, especially in the case
of the blunted plate problem.

The fictitious time step Av used in the ADI scheme was found to
vary with the body shape parameter R or a and the Reynolds number Re.

A time step of 10 was found to be optimum for obtaining a converged
solution of the problems for low and moderately high Reynolds numbers

of up to 100. Beyond this value of Reynolds number a larger time

step was necessary. For example, for Reynolds number equal to 104, a
time step of 100 was used to obtain the converged solutions. It was
also observed that the convergence process was very much improved by
taking initially a larger time step and subsequently reducing it as

the iteration proceeded. A further improvement in convergence was
achieved by suitable averaging of the two levels of solutions and using
the averaged values of the solution vectors at the beginning of the next

iteration.




2b. Blunted Wedges

The streamwise distributions of the vorticity function g(p,qw) at
the wall for the case of the parabola are presented in Figure 24 for
Reynolds numbers between 0 and 104. A3 the Reynolds number increases,
the value of the vorticity function g(p,qw) at the stagnation point
approaches the stagnation flow value given by the Hiemenz solution. At
Re = 104 the skin friction value approaches the stagnation flow value
of 1.233 and the Navier-Stokes solution matches with the present
boundary-layer solution at the stagnation point for the flow past a
parabola. The variations of the vorticity function for the thin flat
plate case, which is obtained from the flow past a parabola with
Re = 0 is also shown in Figure 24. A comparison between the present
results and those of Davis15 for leading edge skin friction on a
parabola is given in Figure 25 for Reynolds numbers between 0.l and 104.
The agreement for all Reynolds numbers is good. There are small
differences between the two results at moderately high Reynolds number
between 300 and 1000 as shown in Table 1. Figures 26 and 27 show the
vorticity function distribution along the surface of the blunted
wedges for B = 0.7 and 0.5 respectively. Results of the present
calculations at the stagnation point for B8 = 0.7 and 0.5 agree well
with the corresponding results of Davis, U. Ghia and K. Ghia16
obtained by solving the full Navier-Stokes equations. At downstream

infinity the results of the present calculations approach the boundary-

layer limit exactly.
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2c. Blunted Plates:

The blunted plate analysis using parabolized Navier-Stokes equa-
tions is characterized by two parameters, the bluntness parameter o
and the Reynolds number Re based on the nose radius of curvature at
the stagnation point. Figure 28 shows typical results for skin
friction for the blunt plate given by a = 0.7. Retaining the value
of a and increasing the Reynolds number Re, the shoulder influence is
further removed from the point (O’qw)' The .leading edge will appear ¢
more like a vertical surface for the oncoming stream for high Reynulds
number flow cases and the flow in the vicinity of the point (O,qw)
will approach the stagnation flow. Therefore, it is found that with
an increase of the value of Re, the vorticity value at the point (O,qw)
approaches the stagnation flow value. The vorticity function g(p,ﬁw)
drops along the surface from the stagnation point value to the
Blasius value for a flat plate at downstream infinity. Decreasing
the value of the parameter o decreases the bluntness of the shoulder.
The skin friction distribution for a = 0.5 as shown in Figure 29
displays larger gradients and an earlier drop from the stagnation point
value as compared to the skin friction distribution for the parameter
4 = 0,7 for the same Reynolds number.

2d. Optimal Coordinates for Blunted Wedges and Blunted Plates:

In the case of boundary-laver analysis we have analyzed the effects
¢ *ne body shape parameter on the optimal coordinates. In this case

~» -*%e. .8 of varving the Reynolds number Re have been investigated.

- rerdinates for flow past blunted wedges and blunted plates i
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have been obtained for laminar unseparated flow cases. The coordinate
calculations were specialized to the limiting cases of flow past

a parabolic cylinder, the thin flat plate and the flow against the
vertical wall.

The streamwise distributions of the coordinate function for the
case of a parabola are shown in Figure 30a for various Reynolds
numbers Re, which vary from ¢ to 104. The coordinate function t(£,0)
monotonically approaches the correct downstream condition at infinity.
With increasing Re, the variations approach the boundary-layer
distribution and results of t(£,0) match exactly with the boundary-
layer solution at Re = lO4 as shown in Figure 30b, except near the
leading edge. For the case of a thin flat plate, the optimal
coordinates are obtained by setting Re = 0 in the parabola problem.
Results of the surface distribution of t(g,n) for the thin flat plate
are also shown along with the results for the parabola in Figure 30a.
Effects of Re on the optimal coordinates for increasing value of the
downstream wedge angle are presented in Figures 31 and 32 for wedge
parameters of B = 0.3 and 0.5, respectively. Similar features as
described in the case of the parabola are observed in these cases.

The coordinate dictribution for B = 0.7, which represents a flow
closer to a stagnation flow, is shown in Figure 33. As anticipated,
the parabolized Navier-Stokes solutions agree with the boundary-layer
solutions at lower Reynolds number than the cases discussed earlier.

The optimal coordinates were obtained for the blunted plate cases

for Reynolds number between 0.1 and 100. Reynolds numbers larger than
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a value of 100 were not obtained because of poor convergence of the
present numerical scheme. Typical plots of the surface value of the
coordinate function are shown in Figures 34 and 35 for a = 0.7 and
0.5 and for Reynolds numbers between 0.1 and 100. In all these cases
with increasing values of Re, the coordinate function at the surface
tends to assume a boundary-layer variation. Since a = 1 represents
the case of a parabola, the optimal coordinate results for this case
have already been discussed along with the blunted wedge cases and
will not be repeated here.

The conformal and the optimal coordinate plots for the thin flat plate
and the parabola are shown in Figures 36(a,b) and 37(a,b) respectively.
The initial differences between the two coordinate systems, such as.
are observed in Figure 36a for the flat plate case and in Figure 37a
for the case of a parabola, tend to reduce as we go further downstream
from the body surface. This is clear from the plots shown in Figures-
36b and 37b.

Figure 38a shows the conformal and the optimal coordinates near the
surface of a blunted wedge represented by B8 = 0.5 and for Reynolds
number Re = 100, Further downstream of the blunted wedge surface,
the optimal coordinates,.as shown in Figure 38b, tend to merge with

the corresponding conformal coordinates.
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VI. CONCLUSIONS

In the present analysis of viscous flow, it has been successfully
demonstrated that it is possible to numerically generate a particular
set of flow dependent coordinates called optimal coordinates. Results
of the integration of these coordinate equations reveal that the
optimal coordinates used here may be viewed as a generalized form of
conformal coordinates. The optimal coordinates considered here
automatically degenerate into convenient sets of coordinates for
specific flow fields; for example, in the case of first-order boundary-
layer flow past a thin flat plate, the optimal coordinates degenerate
into parabolic coérdinates, which are the most natural form of the
coordinates for the thin flat plate. Similarly for the case of flow
against a vertical wall, the optimal coordinates become simple
Cartesian coordinates, for both, the boundary-layer flow and the
Navier-Stokes flow.

The advantages of viscous flow analysis in optimal coordinates
are as follows. Firstly, the boundary-layer solution obtained in
optimal coordinates is uniformly valid throughout the entire flowfield.
Secondly, similarity conditions are automatically satisfied when

similarity exists, with the present form of the coordinates,

The results of the optimal coordinate calculations using parabolized

Navier-Stokes equations for the case of the parabola and blunted wedges
have shown excellent agreement with the existing results using full

Navier-Stokes equations for all Reynolds numbers., This indicates
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that the parabolic approximation to the Navier-Stokes equations

is a more accurate representation of the full Navier-Stokes equations
if the equations are generated in optimal coordinates. The works

of Davis15 and U. Ghia and Davis31 which used the parabolized Navier-
Stokes equations in conformal coordinates (which are semi-optimal

in nature) have shown reasonable agreement with full Navier-Stokes
results even for low Reynolds numbers, and therefore it was to be
expected that the use of optimal coordinates in the parabolic form

of the Navier-~Stokes equations would further improve the results.

The results of the present calculations verify this assumption.

The governing differential equations and the numerical scheme
developed in the present study for boundary-layer analysis was found
to be successful in predicting first order optimal coordinates.

Present numerical calculations showed that the cross-derivative
term sr’ in the coordinate equation can be treated explicity or
implicitly in the numerical solution of the coordinate equations for
boundary-layer analysis, whereas it was found to be essential to
treat the same cross-derivative term Qr_implicitly for the parabolized
Navier-Stokes analysis for the low Reynolds number cases.

In the parabolized Navier-Stokes analysis, the coordinate
equation solution scheme encountered certain difficulties which are
worth mentioning. The first iterative scheme mentioned in the parabolic
Navier-Stokes analysis displayed poor convergence of the solution of

the coordinate equation for high Reynolds numbers. However the use of

the second or the uncoupled iterative scheme was found to improve




the convergence of the problem for most blunt body cases. It was

also observed in general that the relaxation process of the coordinate

equation becomes very sensitive to the fictitious time step, Av,

and the initialization process of the coordinate function for high

Reynolds number cases. While the second scheme enjoys a greater

flexibility of choice of the time step Av and the initialization

process of the coordinate function as compared to the first, diffi-

culties were still encountered for Reynolds numbers greater than ¢
100 for blunted plate problems. Therefore a future effort should

be made to resolve the problem of poor convergence for high Reynolds

number.




10.

11.

12.

13.

alll B sy ey Y

REFERENCES

Kaplun, S., "The Role of Coordinate System in Boundary-Layer Theory,"
Journal of Applied Mathematics and Physics, (ZAMP), 5, Vol. V., 1954,
pp. 111-135.

Latta, G.E., "Singular Perturbation Problem," Ph.D. Thesis, California
Institute of Technology, 1951.

Von Misses, R. and Friedrichs, K.O., "Fluid Dynmamics,' Chapter IV, Brown
University Notes, Summer 1941.

Weyl, H., "On the Differential Equations of the Simplest Boundary Layer
Problems," Ann. Math. 43, No. 2, April 1942, pp. 381-407.

Segel, L.A., "A Uniformly-Valid Asymptotic Expansion of the Solution to
an Unsteady Boundary-Layer Problem," J. Math. and Physics, 39, 1960,
ppP. 189-197.

Crespo da Silva, M.R.M. and Davis, R.T., "A Study of Optimal Coordinate
Theory with Application to Several Physical Problems,'" International
Journal of Engineering Science, 1977, Vol. 15, pp. 455-464.

Legner, H.H., "On Optimal Coordinates and Boundary Layer Theory," Doctoral
Thesis, Department of Aeronautics and Astronautics, Stanford University,
July 1971.

Zauderer, E., "Boundary Layer and Uniform Asymptotic Expansions for
Diffraction Problems," SIAM J. Appl. Math., 19, pp. 575-600.

Van Dyke, M.D., "Higher Approximations in Boundary Layer Theory - Parabola
in Uniform Stream," J. of Fluid Mechanics, Vol. 19, Part 1, 1964,
PP. 145-159.

Davis, R.T., "A Study of the Use of Optimal Coordinates in the Solution
of the Navier-Stokes Equations," AFL Report No. 74-12-14, Department of
Aerospace Engineering, University of Cincinmati.

Thompson, J.F., Thames, F.C. and Mastin, C.W., "Automatic Numerical
Generation of Body Fitted Curvilinear Coordinate System for Field Con-
taining Any Number of Arbitrary Two Dimensional Bodies,' Journal of
Computational Physics, (15), 1974, pp. 229.

Thames, F.C., Thompson, J.F. and Mastin, C.W., "Numerical Solutions for
Viscous and Potential Flow About Arbitrary Two Dimensional Bodies Using
Body Fitted Coordinate System,” Journal of Computational Physics, 24,
1977, pp. 245-273,

Thompson, J.F., Thames, F.C., Mastin, C.W. and Shanks, S.P., "Use of
Numerically Generated Body Fitted Curvilinear Coordinate Systems for
Solution of the Navier-Stokes Equation," Proceedings of the AIAA 2nd
Computational Fluid Dynamics Conference, Hartford, Connecticut, 1975.

74

k__-

T— P~ e e

|



14.

15.

16.

——— gy [ [ ] 3 —

17.

19.

20.

21.

22.

23.

24,

25.

26.

27.

aml GEN N ma) SN e IR MR semen et e

Davis, R.T., "Numerical Solution of the Incompressible Navier-Stokes
Equations for Two~Dimensional Flows at High Reynolds Number," First
International Conference on Numerical Ship Hydro-dynamics. Edited by
Joanna W. Scot and Nils Salveson, Vol. 20-22, October 1975.

Davis, R.T., "Numerical Solutions of Navier-Stokes Equations for Symmetric
Laminar Incompressible Flow Past a Parabola," Journal of Fluid Mechanics,
Vol. 51, Part 3, 1972, pp. 417-433.

Davis, R.T., Ghia, U. and Ghia, K.N., "Laminar Incompressible Flow Past
Blunted Wedges," Int. Journal of Computers and Fluids, Vol. 2, 1974,

Ghia, U. and Davis, R.T., "Solution of Navier-Stokes Equations for Flow
Past a Class of Two-Dimensional Semi-Infinite Bodies,' Preliminary
Version published as AIAA Paper No. 74-12, also Final Version in ATAA
Journal, Vol. 12, No. 12, December 1974.

Werle, M.J. and Bernstein, J.M., "A Comparative Numerical Study of
Approximation to Navier-Stokes Equations for Incompressible Separated
Flow," Report No. AFL 74-7-12, Department of Aerospace Engineering,
University of Cincinnati, August 1974.

Van Dyke, M.D., '"Perturbation Methods in Fluid Mechanics," Academic
Press, New York and London, 1969,

Lagerstrom, P.A., "Laminar Flow Theory," in "Theory of Laminar Flows,"
edited by F.K. Moore, Princeton University Press, 1964.

Schlichting, H., "Boundary Layer Theory," McGraw-Hill Series in
Mechanical Engineering, McGraw Hill Book Company, New York.

Blottner, F.G. and Flugge-lotz, I., "Finite Difference Computation of
the Boundary Layer With Displacement Thickness Interaction," J. Mechnique,
2, 1963, pp. 397-423.

Van de Vooren, A.I. and Dijkstra, D., "The Navier~Stokes Solution for
Laminar Flow Past a Semi-Infinite Flat Plate,” J. Engineering Math.,
4, 1970, pp. 9-27.

Thomas, L.H., "Elliptic Problems in Linear Difference Equations Over a
Network,'" Watsons Science Computing Lab. Report, Columbia University,
1949,

Douglas, J., "On the Numerical Integration of [(Bzu/3x2)+(32u/3y2)- (3u/3t)]

by Implicit Methods," J. SIAM, 3, 1955, pp. 42-65.

Roache, P.J., "Computational Fluid Dynamics," Hermosa Publishers,
Albuquerque, NM, 1976.

Iynger, S.R.K. and Jain, M.K., "Comparative Study of Two and Three Level
ADI Methods for Parabolic Equations with a Mixed Derivative," Inter-
national Journal for Numerical Methods in Engineering," Vol. 10, 1976,
pr. 1309-1315.

75

-

»
'
)
’
t
il




28. Ghia, U. and Ghia, K.N., "Numerically Generation of a System of Curvi-
linear Coordinates for Turbine Cascade Flow Analysis,'" Lecture Notes
on Physics, Vol. 59, June 1976, pp. 197-204.

29. Mitchel, A.R., "Computational Methods in Partial Differential Equations,"
John Wiley and Sons, Ltd.

| -

P

P 2 Wgren: . 1
all HR e e

76




SHNVId ALYNIQYOO0D TVWILJO ONVY

ouerd ajeutpiooo teurido

— e A G G T D e = . . Su = e e

(

01

— = .-

STARQ I93FV)

fIVHYOANOD ‘IVIOISANHd dNL NIAIMLAG dIHSNOILVIAY

(1) 3

= 2z ‘suerd 3

- Do -

b o -

IR -

*1 3anbtg

auetd z peoysiyd

———




IATLVATMAJ QEIXIW Y YOd SAWAHOS SNOMVA  °¢ *OId

TR g

- e

x
0 < ¢ aog
j=u' 4w {-utm
N
3
uysm utm uly-m
feutm feul g-u
a
0s 79 10z 0="9 204
1-u'm {~uf j-w
1~ufy 4w 1-ufm auc.-nl
ut s Ytm uty-m ujsm ujém uty-w
peud §om jautn peulem jaute P AT ]




A
Am.nmﬁ:mo I933V) Aoamﬁrma 19313V )
SALVNIQIO00 TORIOINCO NI doaEaM GRIN™  “qE€ *DId SALYNIQHO0O NVISEARIVO NI IOIM GLINOTE “eg “DId
INVId TIRIQINCD ANV'Id "TNOISAId
. 4=
b O=g°Q = w‘ ’ y X
- -
AxyowwAg jo STXY ¢ “ \ n
1 °>
049°0=-¢
o=g‘0t ®
¢ e
d M _p &




v:o=b

SALVNIQIO0D

TURICINOD NI ALVId NOIHL JLINTANI~TWAS *G "DIdA

INY'Id "TYWJdOJdNOD

q+

SALVNIGRIOOD NVISAIMVD NI ALVId MOIHL JLINTANI-IWIS ¢ “OId

ANY1d TVDISAHd }

v°0=b

-

80




-—

INVId TVOISAHd dHL NI SIAVHS AQOo"9 9 °*9IJ

SIXV-A
0°T~ L A 0"t~ 5°0~ 0°0 s°'0 O.—u s 1 0°
|
| | 00
0°0~0 g g
1°0
5
N-O\ 1°- Nm
]
n
€°0
¥o i
s°t
s°0
0°1 =1 9°
-0z
i 4
8°0="
lehn

81




CINCINNATI UNIV OM OEPT OF AEROSPACE ENSINEERING AND==ETC K/ 20/

CALCULATION OF OPTIMAL COORDINATES FOR TWO=DIMENSIONAL INCOMPRE==ET
JUL 79 R T DAVIS) R K ROUT NOOO18=76-C=0359

UNCLASSIFIED AFL=T9=T7=87 N

AD=ADB0 #83 L)
(41V}]




-—4*
PEAD INPTT mam ! SOLVE CoCRDTOTE
STON 3T ADZ -SCELE
L d
QALSTTAT® ST=P {— —
SIS AXD STORE ‘ -~ o) < ) m‘mv}
VESTCRS VP, _
L \_I-I
SCLVE TES SIMITAATTY >
SCTATISN AT IsITD CALSTIATE COORSTXATSS
4 1
w& DaSTLACTYEY™ LI .4
T=ICXYTSS ¢ AT teImWD fhay o PR
> -
J . _
-
SCL7E 3CTXRARY La¥mR wo TRTS)
4 e YZS
QALSTZATS DISTLACYw
TEICINESS L(p)
J

CIITX TEZ OPTIVAL
by o] CCORDIMATE CONDITION

) '-.-. = L(p)=C A
-
2=+l
‘LL:S z 3;?:5-1]
s

FIG. 7. FLOW CHART FOR SOLVING BOUNDARY~LAYER EQUATIONS
IN OPTIMAL COORDINATES




| SOLVE STAR(*) L=VL

NO

CALCULATE STEP SIZES
AND STORE

[ INITIALIZE SOLUTICN
VECTORS T,7I,G,7

SOLVE THE SIMILARITY
TION AT I=IZND

| CALCULATE DISPLACE
MENT THICXNESS C
AT I=IZND

NO

I=I+l

IS I»IZND-1

- YES

F THE CCORDINATE

- 5
SOLVE THE (n+l) LEVEL
0
EQUATICN

IS SRRCACC

——I'I

CPF CCORDINATE
SCQUATICON

Lso:.va FLOW EQUATIONS

CALCULATE DIS
MENT THICXNESS L(p)

IS OPTIMAL COORDIMATE

CONDITION SATISFIED,
i.e I? L(p)=C

YES

=S

—-‘ CALCTLATE COORDINATES l

R

L‘.’Rm '!.'!I.P;Q.ir-".xd’

I1I+l

={s o1z ]

FIG. 8. FLOW CHART FOR SOLVING PARABOLIZED NAVIER-STOKES

EQUATIONS IN OPTIMAL COORDINATES BY COUPLED SCHEME

'~ M Rl NNt il e el A o




1

DATA CHECX IF THE OPTIMAL
|READ TNPUT ) SDIGATE CONDITION
T T TS [SATISPIED t.e IF L(p)xC
AND STORE ‘ res

INITIALISE SOLUTION L
VECTORS ?,G,T.TI
s ___JlcarcuraTe coorpImATES

.

PRINT 7,71,2.Q,3 "

SOLVE THE SIMILARITY
I«IZND

MENT TEICKNESS C AT
S ) vo -[1s 1=

LvE ﬁd EQUADTIONS
—s0

|CALCTLATE DISPLACTIMENT- ves
jT2IcxNEsSS L(p)

IsTel

ik
X IS I>Ixp-1
=

YES

LVE COORDINATE
UATION BY ADI
IS DREACC |

e 1

[y

FIG. 9. FLOW CHART FOR SOLVING PARABOLIZED NAVIER~STOKES
EQUATIONS IN OPTIMAL COORDINATES BY UNCOUPLED SCHEME

- MR g

84




SA90dIM QALNNTE YOd SHOLLAGIVNLSIA LNILAVH) AUNSSIUd 01 “9OId

+« d
0°000T 0°00T 0°01 0'1 1°0
1 1 ] |
|
(etoqeaed) 0°0 = 9
- 1z0 ﬁ
|
€0
B : Jvo Y9
wy
[ o]
S0
B n 9°0
L0
B 480
T (1TeM TeoT3a3A) 0°1 0°1
i L [} [| NO.H




SdADAIM AQALNNTE Y04 SNOILAYIVLSIA NOILOINA NINS °“TIT *9Id

+ d
0°000t 0°00T 0°01 0°1 T°0 10°0
T B | T T Yo
(efoqexed) 0°Q = ¢
o
B 9°0
. ) uorynos sekey Krepunog 1 80 °
("p'a)6
l m.c n °oﬂ
L0
(= J z°1
1
L i 1 ’eu




0°0001

SAXMA CLLYTE HOX SNOLLMHINLSIU NOLLDONME INDWIONIISId ‘g1 *OId

+ d
0°00T 0°01 0°1 1°0 10°0
1] v I ' S°0
(T1eM (=013 10A) 0°T = ¢
- A
®
. 7160
(d)¥
- 101
(etoqeaed) 00 -

1et

- uotr3intos asdAer Axepunog
1 L — 1 S° 1

e e e omon @R 0 O

—
o

R T yhde




s

SALY'Id AILNOTE d0d SNOLLNUIMLSIA NOILOIMA NINS ‘€1 °*9id ]

. « d T
0°000T 0'00T o'or o't 1'0 10'0
| T I ' £°0 i
- -1 s'0
, 2
uoranyos xakey Axepunog | L'0
0°1 =0 ( 0’d)b
: Lo {60
S0
£°0
a z°o 411
. 4 €°1
1 1 1 1 Lo |




SALV1d QIINTH HOd SHOIMMIVLSIA JNATUVE) JINSSIRId 'y T ‘OId .

+ d
070001 0° 00T 0° 0t 0'1T 1°0 10°0
| T . T T v-o-
- - c.o ”
(etoqeaed )} 0°1
L0 uotrantos 194k Axepunod
G0 wm
0
u T80
o 1¢°1
A 1 1 1 9° 1

e




00001

SALV'Id AALNNTE YOd SNOILNUIY

0°001

0ot

LSIA

NOILONNA LNIWION'IdSId

‘61 ‘D14

10°0

(eroqueaed) g

.

=0
L°0
S°0
£°0
<o

v'o

uorinyog asder Axepunog

90

(d) 9

(A |

9°1

—— bovmn ] [ -

i

Hs v e o

T gt oo S

A5 <

*

~w



d490ddM dILNNTE Y04 SALUYNIAYOO0D TVWILJO ANV IVWYOJINOD “©91 °OId

SIXV-X
0~ c'0- 0°0 c°0 /1) 9°0 8°0 0°1 1 ' 1
1 1 T T J _,. Ik _ N | 00 =d 0°0
(u'3) Tewrado "7 T | _ 0
— (b‘d)tewaozuo) J ) _ * “ _ - C°0 1 20
L°0 = = oy | _
v | \ 1 \ £°0
- s3Insay =ft= ~ .
10ke1 Axepunog i ﬂl ¥°0 vo
B 7 970
&
- o~
[7)] (<)
- - anc
.. -1 0°1
000 =0
= L NIH
[~ vt
l 1 L 1 1 1 | 1 9°1




dO0IM dILNNTE HOd SHALYNIQYOO0D 'TVWILIO ANV TY¥IWMOJINOD °*d91 °951d

0¢

SIXV-X
0¢- ST- ot~ G- 0 g 0T ST 0c s¢
T ] T ] | T To=g "
(u'g)Teurado — — — .
- (b’d) Tewroguo)
Lo =9
s3Iusay aadeT Axepunog v
1
9
Q= b
j
-
} A s
|
—_— | — e o | _— L _— e ~—1 —_ -

1118

1 st

1[4

T4

113

SIXY-X

%92

ncp—
=y

R

M




dOAIM AALNNTE YOd SALYNIAHOO0D ‘IVAWILLJIQ ANV INWHOANOD ‘el "91d
SIX\V-A
F0- N..c.. o..o 0 AN 9°0 8°0 c-.H N.F~ V't
| HITTTITT T 1 o=4d| o0
==ty I | |
AT T vo
- e T TS
_\m . UT- . f_ zeo 1 270
(u'3) rewgado — —— .~"§H == ﬂ.\nu .
4 (b‘d) Tewaojuo) #.,hnha - ~ ~¥°0
50 =9 ”q EH 3= v-o
. s3nsay "\ 55.4”.# N iy oy - -
19ke1 Kaepunog QQ a##. S°0 9°0
/ N
i QI.\%#ay 9°0
l~h~ n% i
00 = b* g \\ \ g a& L0
. To i~{ # Ay .
z°0 o / .ﬁ 8°0 01
i o 1 6°0 |
8°0 6°0 1
1 1 1 1 1 L | 1 )
120

SIX¥-X

o o— [

93

o]




Gl G e e - .

g=0 Boundary layer Results

B =0.5

—— - Conformal (p,q)
— — Optimal (€,n)

-40

50

=
o
[=]
3]
=
a
&3
B
=
-
—
=
-4
(o
B
[97]
=
B
=4
=
]
Q
=
197] Q
= o
] &
< -
I —
> <
=
[
I
<9
o)
a
=
=
2
=
(o
o
=
o
Q
ol
™~
-
Q
far}
<%

. ! .
(=] 20
- 1

o o i
(3] -t “
SIX¥-X
)
o T S~ “ T




dO9d3aM QILNNTIE d0d SHLYNIQEO0D TIVWILAO ANV IVWIOINOD “eg81 °"9Id
SIXV-X
v o- 0°0 70 8°0 1 9°1
T T T | “ ._ __ “ __ T __ T OHQﬂ
( u’3) Tewr3Ido — — — ._n.-.. 1 “.l = __u”V 10
| 4
(b‘d) rewraozuo) — J l
gn.-+ W‘ﬁf — >z
- - .
s3Tnsay .’\ [~ > €0
xake1 Aaxepunog QQ = .\.IEE
. Q\Q / /1 h~ = v .
&”‘&0 / ] h_ﬁﬁvm.c
i . / V L0 |
/
0=b 7 >~/ \J\ Y /] hv
B /'S .
</ /
- 1°0 \\A \ L /1 80 .
PSS NINY 60
- £°0 _\ N\ Y% 0°1 ]
P°0 : —\ /
9°0 ﬂ
| { 1 | | | 1 ] 1
B ~ ey o B — onmn WD

0°0

v°o

8°0

SIXV-X

95

i ey .

R yY=




dO0dM Q3LNOTY Y04 SALVNIUAO0D ‘IVWILJIO UNV TVWHOINOD °d81l °9l1d
SIXV-A
qZ- 0C- o1~ 01 0¢ ot ov 14
! ! !
( uU'3)rewy3dg — ——
(b*d)tvutzozuo)
- moe - Q -
Qﬂmv // -’-/
1
N
) \
4 N
- N -
£/ N
N
2N
s3Tnsay aadel Aaepunog
1 L 1
omn

ST

SIXY-X

114

St

e o o

96




VIOEVHVd 40d SULVNIQYQOD IVHWILJIO UNV ‘IVWHOINOD

9°0~- ¥°0-

0°0

‘e6l

o rmv — — ——— r—

"OI1d

( b‘d) {ewtaojuo)

{etoqeaeq) 0 = ¢

s3Tnsay
- aoke1 Aaeputog

- (W'Idrewrydo — — —

0°0

8’0

¢l

SIXY-X

0°¢

Wi . e

- vt

97




0§

VI0HVUVd 40d SALVNIQYOO0D TVWILAO ANV TVIWIOLANOD

a6 1

‘OId

'

(etoqexed) 00 =9

(u’'3) Tewrldg — — — a 6
(b’dyTeaxojuo;) -

s3Tnsay aadey Aaepunog
1 1




CONFORMAL AND OPT

20a.




e e o o RO srvasoulii B

i
dLY'Id GILNN'TE ¥Od SILYNIAYOO0D TIVWILAO ANV TVINHOANOD °qOz °9Id ‘M
SIXV-X -
0°05- 0°sZ- 00°0 0°S¢ 0°05 S°29 'y
| M |
L
0=0hHb 0°0
T »
— p
4
- 0°6¢ o
o
(]
B ]
%
-
wm
- 0°09
s3nsay aade1 Aaepunog 9
(u’3) teuwpydo——— »
(b’d) jewaojuo)d
¢°0 =0 - 0°6L
6 n ey
o e b e Vol WER W




T g o, h ) A T Rer =

T TS S . AT © ne YT B

JLVId QdILNATE YOd SALYNIAYOO0D 'IVWILJIO ANV dﬂZﬁO&ZOU ‘et ‘o1d

SIXV-A
L°0O- S°0- £°0- 1°0- 1°0 £°0 S0 L*0 6°0 1°1
b ' L ! S | | 1 i 1
4. | | 0°0 =d 0°0
1 —J—1
A4 T —=> 10
s3Tnsay xadey KAaepunog — ~ -
————— e ——— . N c
(U'9)  Tewr3dO — o e . \.If >0 7.
’ . . - — —_
(b’d) tewaojuoy —m———oH >0 |
€°0 = v 4L ‘ vo
X AL G~ g
/ - . 2]
/ ~D 50 20

1°0 / / VA /VN - 8°0

A1) \ ). N &N

\ ./ N Y e o't A
€0 \\~ \ N6t &
. A2\ , . g

Vo N 0°1 - z°1 w

N 7 N1t
S0 N
N z°1 - et



0°06-

JLVTd JIELNOTE YOd SALYNIAUOO0D TVWILIO ANV ‘TVHIOJINOD

s3tnsay avdley Aaepunog

(u’3) tewpydo— —— ——

b’d) tewaojuo)

€°0 =»

‘qre "9o1d

102

SIX¥-X

0°0S

P XYy o




HLYId dILNA'TE HOd SALYNIQUOOD

TYWILIO UNV 'IVWHOANOD “eg¢ "OId

SIXV-A
6°0- L°0- S0~ £°0- 1°0- 1°0 £°0 S0 L0 6°0 1°1
L | | 1 | 1 1 u- I | .
_1_ 1 perasry LA
#\L un i m——
<°0
‘/
s3tnsey a9der Aaepunog - n[VN.c
| I1 1 S N
(u’y) tewrrdp — — —— .N - V v°o
: £€°0
(b*d) tewaojuo) —— ——— —
G°'Q = © —_— v Vo 90 ?.a
S, :
—_— S°0 tn
AN o -8°0
\\\ VX 1IIlIII 9°0
. - wu
P &
\ ~~ L0
1°0
e ~
~ /\ .A N ~ 8- _
0L (A ¢
\ N
N\ yd 6°0
N\\ VX/ AN \\ 0°'1 - b1

103

A s S vy D




dLVId dILNATD Y04 SALUNIAUOO0D 'IVWILAO ANV TVWIOANOD 'qzz °9Id

SIXV-A
5°¢9- 0°0s5- 0°s¢- 00°0 0°s¢ 0°0S

(b’d) t1ewxojuo)

m -. .
9 9
s3Insay x9AeT Axepunog [ ,
(u’3) tewrydo — ——— — :
8

-0°SZ

— 0°0S

~ 0°SL

~-G9°L8

SIX¥Y-X

104

-




ALV'Td GHALNATE YOS SALVNIMQIOO0D 'IVWILAO ANV 'IVWIO4NOD ‘vEg °*91d

SIXN=-A
6°0- L°0- £°0- 1°0 G*0 v 6°0 1
L 1 | | 1 ) i | oy _
ﬁﬁ _ _ 0=d | ¢°0
] gf_f —|—1"0
. ~ MM/\ Tl T U0,
s3Tnsay JIeAel Aaepunog /\ /\ —Z°0
(v’3) tewryzdo— ———— ) \, Y —— cn
(b’d) {rwiojyuo) .\ e Vo veo
L°9o = v .V \.I\. — J=
] %k
. 9°0
=/ ” $°0 »
A —_— !
A "
J\ VA /u.o —~ 8°0
~ / \ //
<~ / ) N g—6S'0
01
~ ~.
\ \VA \ ~ g0~ 9 0
N ~
\\ / / ™~ L0 _
0 Q“mu \ 21
e -
et / 7 ~N8°0
1°0=u .~ (A c0 \
1ro=b 0 . A
£°0 Vo

105




S°C9-

e — =

v o

ALYId dALNNTE A0d SALYNIQMOO0D TYWILIO UNV 'IVWYOJNOO

SIXV-A
0°06- 0°62- 00°0
| 1 | ]

ocuﬁv

s3tnsay xo9de1 Axepunog

(u’3) tewgido — —
(b’'d) Tewiojzuo)
L°0 =0 6

XH
S

‘qec

0" | 0°05  §°¢9
T e = oo
/ \ 1 .
J—.
‘ \ -0°5¢
/"
y
ﬂ ©
W 3
“0°0S
e
- 0°SL
-
6
0°001




SYJAANITAD OI'IOHVHVd MOd -SNOILNUIULSIU NOLLOIMA NIMS

0°00001

0°0001

0°00T

0°01

01 1°0

"ve

‘O14

10°0

I

]
(°3e1d 3eTd UTYL) 0°0 = oy

o

t

=

01

001

VU0 T

00001

L d

v°o

9°0

("b'd) 0
80

107

| A ¢

somy omd ol

Ly




SYAANITXD JIT0dVHVd 40 dO3d ONIQVAT dHL &LV NOILOIUA

0000T 0001 001

<+« 9y
01

- WAV -,

som 98 A

NINS °s¢ °DId

§23PUTPIOO) OTTOoqeIRd UT
uUoTANTOS S3H0FS-I3TARN
"~ peztroqeIed (ZL6T)STARAY

uoT3INTOS S9Y01S

-IataeN IInNd (ZL6T)sTARgoO
R

s3Tnsay Juasaid

e r—




d903M qaINnTd Yod SNOIILNBIYLSIQ ZOHEUHKh NIXS

ppey

A —
—————

‘9Z ‘914 M
+- d &
0°0001 0°001 00t 0°T 1°0 10°0
[ T T L 6°0
JTWT Iedei-Axepunog v.
= lnuulllh”ll'lﬁ! Y )
\\ g
A\ \ -
/ (“p'a)p
B 000 e 1~
L0 =9 001
- uorjngos o1 st
S8)jols-IataeN bezyroqeaey T = 9y
i 1 1 1 L
- [rp— = e [ e

vt oed pmd GmS




. '
490dM gALNO'Ta YO SNOILNAIMISIA NOILOIMA NINS “LZ ‘OId

+ d
0°0000T 0° 0001 0°00T 0'01 0°1 1o
~ I T I 9°0
i 4 8°0 i
"
31wy aakeq Aaepunog ( w.&o
=
'/ 0
-
N 0T = ou -1 0°1
00T
L uot3inyos 1
$9)03S~I9TABN paztloqered 00001
: 1 L ! v
I . B oern - PR S L e [ L. [ ] [ ] l l ' l




|
ALY'Id dALNATd HOd SNOILNEIYLSIA NOILLOIYd NIMS °8Z °9Id 2
« d ﬁo
0°0001 07001 0°0T 0° 1 I°0 10°0
T | | T v°o iy
1°0 = &y
- T -1 9% -
-4
P
ot
L Q.
- 0 A3—.IV;:O
i
L°0=m
= 001 0°1
uoT3nyos .
S9)03S-ISTABN paz1toqeaed
- -1 ¢°1
t 1 1 - A |




i -

ALVTId QILNATE YOd SNOILNEIULSIA NOILOIMS NINS °*62 °*9HId

« d g
0°000T 0°00T 0°0T 0°1 1°0 10°0 .U
! | ] | | £°0
(o]
4
1°0 = oy
T ]ur S*0
("bed)s
= - on
o L°0
uor3InTos
S9Y03S~ISTABN pazTrOoqeIRd
B -1 6°0
001
1 L ! 1
1°1




dOVAU(S YIANITXD JITOHdVHVI NO SNOIL

A4I¥LSIA NOILORAA ALYNIQHOOD TVWILIO °e0f °OId

+« 3
0°000T 0°000T 07001 0'o0t1 0°T 1°0 10°0
L 4 | J ¥ | | aoc
{ @3e1d IeLd UTYL ) 0 0=9d
- - N-.H m
1°0
38
" 1 R
- 0t R S
uoganyos 9°1
S9)0315-I9TABN paztroqexed
00001
2 J 1 1 A 0°z

s emes puee G wame e Gmiw G BN DD

R e 4%

g




PR e

JOVAUAS HUANITAD OITT0dWVHVd ¥ NO NOILILAHIHLSIA NOILONNA JALYNIQYO0D ‘IVWILIO “q0f °9Id

070001 0°001 0°01 0°1 : 10 10°0
| 1 ] 3 8°0

b
9
9

uotrinyos
§9){0IS-19TARN pazTTOqeIRd

uogantos aaker-Aaepunog o

= 0°0000T = =y

— . ap— ——— a—t




———

070001

R2L T

AOVJUNS A9AEAM ALNNTA NO SNOILNUIULSIA NOILONAA JALVNIGYO0D ‘I¥WILAO °TE °"OId

« 3
0°00T 0°0T 0°1 1°0 10°0
1 T T T 6°0
-1 01t
UoTINTOY
SOY0IS-TITARN pozT [oqeaed rt
uoTINTos IBAer-Axepuncy] ¢
€0=9
<1
€1
(A
| ] 1 1 St




S iemn s ery some

AJVIHNS A9adM dALNN'1Y NO SNOILNEIYLSIA NOILONQJ dLYNIQUO0D 'TNWILdO °*Z€ °*9Id

0°00T1

uoyanijos sayols
~I3TARN pazTioqRaeq

uorIniog a2her-Axepunog v

S°0 = 4d




dOV4¥NAS dA9Ud¥ dILNNTd NO SNOILNYIULSIA NOILONNA HLVYNIQHOO0D IVWILIO ‘€€ °*9Id

0°01

uofnfos
_BO)OIG-JI[ALN DIz ioeaed

uopintos awler-Aavpuncg o
L'o=4




. v TR

4OVINNS ALVTId dIINNTE NO SNOILNEINLSIG NOILONNA JLYNIUUOOO TYWILLIO “vE °"OId

+ 3
0°'000T 0°000T 0°00T1 0°0T 1°0 10°0
T L T ) 8°0
N 1 01
1°0 = o4
T 1 T
[
. b
B 1 vt
1]
L'O=m
B uorjnyos T 9%
S9)Y0315-I9TARN pazrloqeied
. 001
(| 1 L |
81

R, ~~eny ' v (X [P [o—— r ! [ l I l




dONAINS RiVTd (ELINOTI NO SNOLIMINLSTA NOLLONI JLYNIGQHOO0D ‘IVWILDO °GS€ 914

« 3
0°000T1 0°00T 0°01 0°1 : 1°0 10°0
T T T T 8°0
L °t.-.
T°0=04
x
- HEAR ~
38
) G0 = 141
uor3jntos
§9)035-I9TABN pazTioqeied e
- Tt
| 1 1 1 001
B 1

- v - (o o Lo ] ] ! [ [ l

P RS 1 o




FLVId VLT NIHL ALINTANL=1R1S 80d SALUNIGIO0D TWWLLJO GNY TURIQINGOD

‘egg "DId i

SIXV-A |
60~ 0~ 1°0- €0 L0 60 M |
- , . |
oon | 1 [Latd-b .(w..vwwuﬁﬁl ! oo-a | 7° 2
ot A u\,“ oo G ‘;_n--” 1°0 —w
ARG
A mqﬁu\/\\\/\goﬁm“éé% I~ 0 | . 1
v.og\ 90%0@ ~ /\qu v°0 9 X
S0 “\ —% : ~—L.g % Q
. \\ \ -
9 05 e
- & N l/ uotantos] g0
Lo x . §9)Y031S-XaTABN
L’0 pozyioqereg
g0 ‘ 80 |
-
. ( W3) Tawrydp ——— ,
6°0 m.o?.& TeuwIozuQ)
- o 0T o.cowoMM 1 ¢t
. vt

— wees  WESR (I WIS W ONS WS @ @ - h

7
L



ALVTId LVTd NIHL

ALINTANI-IWAS ¥0d STLVNIQHO0D TVWILJO (NV TVWMOANOD “q9€ °9Id
SIXV-A

0p- 0Z- 0 02 ov 09
[ 7] T LI L B N7 T |30 L ] I y 0
ouL _ 1 “ \ \ ) | “ _ | 0=d

_ W ol \4/ (%\ d_ I I

(AR QQ !
1\ 1\ V- | 1
TS T
—_ ‘Q

z \

- \ 0z

NSKEA |-

\\ Tewiojuaq)

/ya
- I

uoT3INnTos
N S9)03S-I9TABN
7 R pozTroqeied

Tewtydo ——— 4 g9

0°0 =3y
0°0 =9

08

SIXV-X

P VS

121

S e e




VIOHWIVd ¥ 30d SALYNIRIOOO TWWLLJO OGNV TORIOINOD “BLE "OId

SIXV-A
T A ST AN O Sz 0 YA | YAk 4 SL°T “
RLMINIBIE /I 0°o=d| 0°0
(u'3) Temdp —— — %.n ] l. ““lk_ === 1°0
(b‘d) TRwIOzUCD 'lﬂ .ﬁ#l. mm —j>¢°0 g
_ S v {11 -
0T =a /’\%%#P.Eﬁ"n i

L nﬂm
0°0=9 /QQQ,.&\.Q "".q
uoT3INToOs s9303S /Q # ﬁhh" sa Uv.o
- |umﬂ>mz pazT1yoqeaed %‘V\Vﬁﬁh@&g . 1 o1

i
N

0°¢t

e cmwes ewem  ampm NN WA OEE GWE SR R e




VI0gVHYd ¥ HOd SALVYNIQUYOO0D 'IVWILJIO ANV TVWIOJINOD *OId

‘qLe

09—
0 =
(u *3) Tewtadog———g
(b‘d) Tewaojuo)
L N /
0°'1= 24 N
- P -
0°0 =9 a0 6 8
UOT3INTOS S9Y03S
-I191ABN paziToqexed
1 | 1 1 |

e om— o am— - - -|e e

b

123

]]

001

Z o=




A90dM QULNNTE d0d SALYNIQHOOD IVWLLJIO ANV 'TVWHOJINOD ~“egf °“OId

SIXV-A P

"1

~  (u’3) rewr3dQ ———
(b‘d) 1ewxojuo)

0°00T = ®Y
- s'0 =19

UOT3INTOS S3Y03S
-  -x3TAeRN pRzITOqeiRd

ac.c =d 0

Vo

8°0

SIXV¥-X

- e A P SRS

124




JOTIM QLLNOTE ¥Od SALUNIQIO0D TVWLLIO ANV TUWRIQINOO ‘qge *o1d

SIXV-X
0Z- o1 0 0t 0c 113 1] 4
J | MO o=a 0
1
-/ 1 ] z
~~ —— -
S N € o1
N
0=b N\ -
—
1 s Q
(]
4 ~, -~ 1 oC v.a
14 /s S ? m
_—
‘ay. —_—— S L
(U ‘3) Teurado TR .
b‘d L
(b’d) tewtozucp s 1 o
0°00T == 6
S°'0=9
-1 ov
CO..nUﬂ.How
S8)Y03S-I8TARN pazZITOqRIRg
1 | 1 1 . | 1 0S




—~—v

126

Reynolds Number Leading Edge Skin Friction
g(o, Re%)
Davis (1972)
Re Present Results Full Navier-
Stokes Results
0.0 0.529 0.533
0.1 0.562 0.563
0.3 0.583 0.586
1 0.628 0.629
3 0.694 0.694
10 0.793 0.793
30 0.899 0.899
100 1.009 1.009
300 1.083 1.089
1000 1.142 1.150
3000 1.182 1.186
10000. 1.212 1.209
TABLE 1. COMPARISON WITE OTHER RESULTS.
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